A194530
Number of unlabeled rigid interval posets with n non-maximal and 2 maximal elements.
Original entry on oeis.org
0, 1, 3, 9, 32, 132, 623, 3314, 19628, 128126, 914005, 7074517, 59050739, 528741491, 5055414317, 51406084221, 553946196892, 6305737560455, 75610546284387, 952559077043183, 12579235034203780, 173759983171005721, 2505751777457313815, 37657189917162605826
Offset: 0
-
w:= proc(t) option remember;
`if`(t=0, 1, expand(convert(series(series(z +z*(subs(
z=z+y+y*z, w(t-1)) -w(t-1)), z, t+1), y, t+1), polynom)))
end:
a:= n-> coeff(coeff(w(2+n), z, 2), y, n):
seq(a(n), n=0..50);
-
w[t_] := w[t] = If[t == 0, 1, Expand[Normal[Series[Series[z+z*((w[t-1] /. z -> z+y+y*z)-w[t-1]), {z, 0, t+1}], {y, 0, t+1}]]]]; a[n_] := a[n] = Coefficient[Coefficient[w[2+n], z, 2], y, n]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)
A289312
The number of upper-triangular matrices with integer entries whose absolute sum is equal to n, and each row and column contains at least one nonzero entry.
Original entry on oeis.org
1, 2, 6, 26, 142, 946, 7446, 67658, 697118, 8031586, 102312486, 1427905658, 21666671534, 355138949394, 6253348428598, 117720540700842, 2359368991571518, 50157679523340994, 1127327559500923974, 26709016625807923418, 665292778385210384078
Offset: 0
a(2) = 6: The six upper triangular matrices of size 2 with no zero rows or columns are (+-2) and
/+-1 0\
| |.
\0 +-1/
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Ankush Goswami, Abhash Kumar Jha, Byungchan Kim, and Robert Osburn, Asymptotics and sign patterns for coefficients in expansions of Habiro elements, arXiv:2204.02628 [math.NT], 2022.
- Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
-
G:= add(mul(1 - ((1-x)/(1+x))^k, k=1..n),n=0..20):
S:= series(G,x,21):
seq(coeff(S,x,j),j=0..20);
# Peter Bala, Jul 24 2017
-
m = 21; Sum[Product[1 - ((1-x)/(1+x))^k + O[x]^m, {k, 1, n}], {n, 0, m}] // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2020 *)
A193344
Triangle read by rows: T(n,m) (n>=0, 1 <= m <= n+1) = number of unlabeled rigid interval posets with n non-maximal and m maximal elements.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 2, 9, 13, 6, 5, 32, 72, 69, 24, 16, 132, 409, 605, 432, 120, 61, 623, 2480, 5016, 5498, 3120, 720, 271, 3314, 16222, 41955, 62626, 54370, 25560, 5040, 1372, 19628, 114594, 363123, 690935, 814690, 584580, 234360, 40320
Offset: 0
Triangle begins
1
1 1
1 3 2
2 9 13 6
5 32 72 69 24
16 132 409 605 432 120
61 623 2480 5016 5498 3120 720
271 3314 16222 41955 62626 54370 25560 5040
1372 19628 114594 363123 690935 814690 584580 ...
-
w:= proc(t) option remember;
`if`(t=0, 1, expand(convert(series(series(z+z*(subs(
z=z+y+y*z, w(t-1)) -w(t-1)), z, t+1), y, t+1), polynom)))
end:
T:= (n,m)-> coeff(coeff(w(m+n), z, m), y, n):
seq(seq(T(n, m), m=1..n+1), n=0..10); # Alois P. Heinz, Aug 27 2011
-
w[t_] := w[t] = If[t == 0, 1, Expand[Normal[Series[Series[z+z*((w[t-1] /. z -> z+y+y*z)-w[t-1]), {z, 0, t+1}], {y, 0, t+1}]]]]; T[n_, m_] := Coefficient[Coefficient[w[m+n], z, m], y, n]; Table[Table[T[n, m], {m, 1, n+1}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)
A193357
Triangle read by rows: T(n,k) (n>=1, 1 <= k <= n) = number of n-element unlabeled rigid interval posets of height k.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 6, 1, 0, 1, 20, 29, 10, 1, 0, 1, 51, 128, 75, 15, 1, 0, 1, 134, 555, 500, 160, 21, 1, 0, 1, 367, 2427, 3190, 1480, 301, 28, 1, 0, 1, 1048, 10864, 20129, 12835, 3661, 518, 36, 1, 0, 1, 3119, 50145, 127912, 108308, 41041, 7980, 834, 45, 1, 0, 1, 9655, 239581, 827053, 907923, 441553, 111671, 15828, 1275, 55, 1
Offset: 1
Triangle begins
1
0 1
0 1 1
0 1 3 1
0 1 8 6 1
0 1 20 29 10 1
0 1 51 128 75 15 1
0 1 134 555 500 160 21 1
0 1 367 2427 3190 1480 301 28 1
0 1 1048 10864 20129 12835 3661 518 36 1
0 1 3119 50145 127912 108308 41041 7980 834 45 1
0 1 9655 239581 827053 907923 441553 111671 15828 1275 55 1
0 1 31024 1186941 5474614 7654921 4664814 1482110 26944 29175 1870 66 1
...
A193548
Decimal expansion of exp(Pi^2/12).
Original entry on oeis.org
2, 2, 7, 6, 1, 0, 8, 1, 5, 1, 6, 2, 5, 7, 3, 4, 0, 9, 4, 7, 9, 1, 0, 6, 1, 4, 1, 2, 0, 3, 1, 4, 9, 7, 4, 4, 6, 6, 9, 7, 9, 7, 4, 2, 6, 0, 3, 0, 0, 2, 3, 7, 7, 5, 6, 1, 5, 5, 1, 6, 1, 7, 0, 9, 8, 2, 7, 5, 0, 6, 3, 7, 2, 8, 6, 3, 0, 1, 4, 3, 1, 8, 6, 6, 8, 4, 6, 5, 7
Offset: 1
Cf.
A001113,
A022493,
A122214,
A122215,
A122216,
A122217,
A138265,
A207651,
A242153,
A242154,
A242155,
A242156,
A242157,
A242158,
A242159,
A242160,
A242161,
A242162,
A242163,
A242164.
-
Product[Product[k^((1/(n+1))*(-1)^(k)*Binomial[n,k-1]*HarmonicNumber[n]),{k,1,n+1}],{n,1,Infinity}]
RealDigits[E^(Pi^2/12), 10, 100]
-
exp(Pi^2/12) \\ Charles R Greathouse IV, Jul 30 2011
A218757
Triangle read by rows: T(n,k) is the number of length-n ascent sequences without flat steps, containing k zeros.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 2, 3, 0, 0, 0, 5, 9, 2, 0, 0, 0, 16, 32, 13, 0, 0, 0, 0, 61, 132, 72, 6, 0, 0, 0, 0, 271, 623, 409, 69, 0, 0, 0, 0, 0, 1372, 3314, 2480, 605, 24, 0, 0, 0, 0, 0, 7795, 19628, 16222, 5016, 432, 0, 0, 0, 0, 0, 0, 49093, 128126, 114594, 41955, 5498, 120, 0, 0, 0, 0, 0
Offset: 0
Triangle starts:
1,
0, 1,
0, 1, 0,
0, 1, 1, 0,
0, 2, 3, 0, 0,
0, 5, 9, 2, 0, 0,
0, 16, 32, 13, 0, 0, 0,
0, 61, 132, 72, 6, 0, 0, 0,
0, 271, 623, 409, 69, 0, 0, 0, 0,
0, 1372, 3314, 2480, 605, 24, 0, 0, 0, 0,
0, 7795, 19628, 16222, 5016, 432, 0, 0, 0, 0, 0,
0, 49093, 128126, 114594, 41955, 5498, 120, 0, 0, 0, 0, 0,
0, 339386, 914005, 872336, 363123, 62626, 3120, 0, 0, 0, 0, 0, 0,
...
The A138265(5) = 16 length-5 ascent sequences without flat steps are (dots for zeros):
[ #] ascent-seq. #zeros
[ 1] [ . 1 . 1 . ] 3
[ 2] [ . 1 . 1 2 ] 2
[ 3] [ . 1 . 1 3 ] 2
[ 4] [ . 1 . 2 . ] 3
[ 5] [ . 1 . 2 1 ] 2
[ 6] [ . 1 . 2 3 ] 2
[ 7] [ . 1 2 . 1 ] 2
[ 8] [ . 1 2 . 2 ] 2
[ 9] [ . 1 2 . 3 ] 2
[10] [ . 1 2 1 . ] 2
[11] [ . 1 2 1 2 ] 1
[12] [ . 1 2 1 3 ] 1
[13] [ . 1 2 3 . ] 2
[14] [ . 1 2 3 1 ] 1
[15] [ . 1 2 3 2 ] 1
[16] [ . 1 2 3 4 ] 1
There are 5 sequences with 1 zero, 9 with two zeros and 2 with three zeros, so the row for n==5 is 0, 5, 9, 2, 0, 0.
A289317
The number of upper-triangular matrices whose nonzero entries are positive odd numbers summing to n and each row and each column contains a nonzero entry.
Original entry on oeis.org
1, 1, 1, 3, 7, 23, 84, 364, 1792, 9953, 61455, 417720, 3098515, 24902930, 215538825, 1998518430, 19761943208, 207571259703, 2307812703419, 27075591512866, 334263981931669
Offset: 0
a(4) = 7: The Fishburn matrices of size 4 with odd nonzero entries are
/3 0\ /1 0\
\0 1/ \0 3/
/1 1 0\ /1 0 1\ /1 0 0\
|0 1 0| |0 1 0| |0 1 1|
\0 0 1/ \0 0 1/ \0 0 1/
/1 1 0\
|0 0 1|
\0 0 1/
/1 0 0 0\
|0 1 0 0|
|0 0 1 0|
\0 0 0 1/
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
-
C:= x -> x/(1 - x^2):
G:= add(mul( 1 - 1/(1 + C(x))^k, k=1..n), n=0..20):
S:= series(G,x,21):
seq(coeff(S,x,j),j=0..20);
A238425
Number of descent sequences of length n without two consecutive identical elements (descent sequences without flat steps).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 11, 34, 124, 512, 2380, 12294, 69972, 435399, 2942672, 21478882, 168473955, 1413823577, 12644505883, 120097766639, 1207617481139, 12818915877849, 143278176040760, 1682262113899134, 20704109403389717, 266568690074855277, 3583926627760681407
Offset: 0
The a(6) = 11 such descent sequences are (dots denote zeros):
01: [ . 1 . 1 . 1 ]
02: [ . 1 . 1 . 2 ]
03: [ . 1 . 1 . 3 ]
04: [ . 1 . 1 2 . ]
05: [ . 1 . 1 2 1 ]
06: [ . 1 . 2 . 1 ]
07: [ . 1 . 2 . 2 ]
08: [ . 1 . 2 . 3 ]
09: [ . 1 . 2 1 . ]
10: [ . 1 . 2 1 2 ]
11: [ . 1 . 2 1 3 ]
Cf.
A138265 (ascent sequence without two consecutive identical elements).
Cf.
A225588 (all descent sequences).
-
# b(n, i, t): number of length-n postfixes of these sequences with a
# valid prefix having t descents and rightmost element i.
b:= proc(n, i, t) option remember; `if`(n<1, 1,
add(`if`(j=i, 0, b(n-1, j, t+`if`(j b(n-1, 0, 0):
seq(a(n), n=0..30);
-
b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j < i, 1, 0]]], {j, 0, t + 1}]];
a[n_] := b[n - 1, 0, 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 07 2022, after Alois P. Heinz *)
-
@CachedFunction
def b(n, i, t):
if n<1:
return 1
return sum(b(n-1, j, t+(j
Comments