cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A240682 Number of forests with n labeled nodes and 5 trees.

Original entry on oeis.org

1, 15, 210, 3220, 55755, 1092105, 24048255, 590412240, 16027796070, 477411574640, 15495339234375, 544652100894720, 20619226977792170, 836670560604157440, 36232055577668433690, 1668081561600000000000, 81363801140161673297535, 4191692026268767965880320
Offset: 5

Views

Author

Alois P. Heinz, Apr 10 2014

Keywords

Crossrefs

Column m=5 of A105599. A diagonal of A138464.

Programs

  • Maple
    T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
          `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
           T(n-j, m-1), j=1..n-m+1))))
        end:
    a:= n-> T(n, 5):
    seq(a(n), n=5..30);
  • Mathematica
    Table[n^(n-10) * (n-4)*(n-3)*(n-2)*(n-1)*(n^4 + 30*n^3 + 451*n^2 + 3846*n + 15120)/384,{n,5,20}] (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

a(n) = n^(n-10) * (n-4)*(n-3)*(n-2)*(n-1)*(n^4 + 30*n^3 + 451*n^2 + 3846*n + 15120)/384. - Vaclav Kotesovec, Sep 06 2014

A240683 Number of forests with n labeled nodes and 6 trees.

Original entry on oeis.org

1, 21, 378, 7056, 143325, 3207897, 79170399, 2146836978, 63641666088, 2051450651250, 71530799628288, 2684845732979592, 107992630908804096, 4636019437800293718, 211623646464000000000, 10237455825414473977524, 523244238837133507448832, 28177157277452320985386539
Offset: 6

Views

Author

Alois P. Heinz, Apr 10 2014

Keywords

Crossrefs

Column m=6 of A105599. A diagonal of A138464.

Programs

  • Maple
    T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
          `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
           T(n-j, m-1), j=1..n-m+1))))
        end:
    a:= n-> T(n, 6):
    seq(a(n), n=6..30);
  • Mathematica
    Table[n^(n-12) * (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^5 + 40*n^4 + 835*n^3 + 10960*n^2 + 87636*n + 332640)/3840,{n,6,25}] (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

a(n) = n^(n-12) * (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^5 + 40*n^4 + 835*n^3 + 10960*n^2 + 87636*n + 332640)/3840. - Vaclav Kotesovec, Sep 06 2014

A240684 Number of forests with n labeled nodes and 7 trees.

Original entry on oeis.org

1, 28, 630, 14070, 331485, 8411634, 231354123, 6899167275, 222569372025, 7741879425280, 289297137120992, 11570476164077376, 493535471267193810, 22376155441920000000, 1074961750207964923710, 54561107576767408522752, 2918071167402563863036269
Offset: 7

Views

Author

Alois P. Heinz, Apr 10 2014

Keywords

Crossrefs

Column m=7 of A105599. A diagonal of A138464.

Programs

  • Maple
    T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
          `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
           T(n-j, m-1), j=1..n-m+1))))
        end:
    a:= n-> T(n, 7):
    seq(a(n), n=7..30);
  • Mathematica
    Table[n^(n-14) * (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^6 + 51*n^5 + 1385*n^4 + 24885*n^3 + 303766*n^2 + 2333976*n + 8648640)/46080,{n,7,25}] (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

a(n) = n^(n-14) * (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^6 + 51*n^5 + 1385*n^4 + 24885*n^3 + 303766*n^2 + 2333976*n + 8648640)/46080. - Vaclav Kotesovec, Sep 06 2014

A240685 Number of forests with n labeled nodes and 8 trees.

Original entry on oeis.org

1, 36, 990, 26070, 705375, 20151846, 614506893, 20073049425, 702495121185, 26300384653400, 1050925859466912, 44702294310795888, 2018603140944000000, 96508616036970572820, 4872478522317533107200, 259140537891648535707618, 14485018396686799073181696
Offset: 8

Views

Author

Alois P. Heinz, Apr 10 2014

Keywords

Crossrefs

Column m=8 of A105599. A diagonal of A138464.

Programs

  • Maple
    T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
          `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
           T(n-j, m-1), j=1..n-m+1))))
        end:
    a:= n-> T(n, 8):
    seq(a(n), n=8..30);
  • Mathematica
    Table[n^(n-16) * (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^7 + 63*n^6 + 2135*n^5 + 49245*n^4 + 816256*n^3 + 9527868*n^2 + 71254800*n + 259459200)/645120,{n,8,25}] (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

a(n) = n^(n-16) * (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^7 + 63*n^6 + 2135*n^5 + 49245*n^4 + 816256*n^3 + 9527868*n^2 + 71254800*n + 259459200)/645120. - Vaclav Kotesovec, Sep 06 2014

A240686 Number of forests with n labeled nodes and 9 trees.

Original entry on oeis.org

1, 45, 1485, 45540, 1402830, 44837793, 1508782275, 53789959080, 2036262886515, 81857181636945, 3490649483399793, 157637380245930000, 7524305274666328785, 378816067488484478160, 20074256751067210380645, 1117410784286881766178816, 65207052558569641113281250
Offset: 9

Views

Author

Alois P. Heinz, Apr 10 2014

Keywords

Crossrefs

Column m=9 of A105599. A diagonal of A138464.

Programs

  • Maple
    T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
          `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
           T(n-j, m-1), j=1..n-m+1))))
        end:
    a:= n-> T(n, 9):
    seq(a(n), n=9..30);
  • Mathematica
    Table[n^(n-18) * (n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^8 + 76*n^7 + 3122*n^6 + 88760*n^5 + 1873921*n^4 + 29555596*n^3 + 334746252*n^2 + 2455095600*n + 8821612800)/10321920,{n,9,30}] (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

a(n) = n^(n-18) * (n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^8 + 76*n^7 + 3122*n^6 + 88760*n^5 + 1873921*n^4 + 29555596*n^3 + 334746252*n^2 + 2455095600*n + 8821612800)/10321920. - Vaclav Kotesovec, Sep 06 2014

A240687 Number of forests with n labeled nodes and 10 trees.

Original entry on oeis.org

1, 55, 2145, 75790, 2637635, 93783690, 3467403940, 134463763720, 5491244257785, 236503301350745, 10742799174110575, 514243815022230930, 25908948794088640280, 1371861202568610407885, 76216658109172817448960, 4435598473883166992187500, 269963484584876515488140800
Offset: 10

Views

Author

Alois P. Heinz, Apr 10 2014

Keywords

Crossrefs

Column m=10 of A105599. A diagonal of A138464.

Programs

  • Maple
    T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
          `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
           T(n-j, m-1), j=1..n-m+1))))
        end:
    a:= n-> T(n, 10):
    seq(a(n), n=10..30);
  • Mathematica
    Table[n^(n-20) * (n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^9 + 90*n^8 + 4386*n^7 + 149436*n^6 + 3859401*n^5 + 77149170*n^4 + 1176873076*n^3 + 13044397176*n^2 + 94273812000*n + 335221286400)/185794560,{n,10,30}] (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

a(n) = n^(n-20) * (n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^9 + 90*n^8 + 4386*n^7 + 149436*n^6 + 3859401*n^5 + 77149170*n^4 + 1176873076*n^3 + 13044397176*n^2 + 94273812000*n + 335221286400)/185794560. - Vaclav Kotesovec, Sep 06 2014

A343805 T(n, k) = [x^k] n! [t^n] 1/(exp((V*(2 + V))/(4*t))*sqrt(1 + V)) where V = W(-2*t*x) and W denotes the Lambert function. Table read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 1, 9, 39, 87, 1, 16, 126, 608, 1553, 1, 25, 310, 2470, 12985, 36145, 1, 36, 645, 7560, 62595, 351252, 1037367, 1, 49, 1197, 19285, 225715, 1946259, 11481631, 35402983, 1, 64, 2044, 43232, 673190, 8011136, 71657404, 439552864, 1400424097
Offset: 0

Views

Author

Peter Luschny, May 01 2021

Keywords

Comments

The rows of the triangle give the coefficients of the Ehrhart polynomials of integral Coxeter permutahedra of type B. These polynomials count lattice points in a dilated lattice polytope. For a definition see Ardila et al. (p. 1158), the generating functions of these polynomials for the classical root systems are given in theorem 5.2 (p. 1163).

Examples

			Triangle starts:
[0] 1;
[1] 1,  1;
[2] 1,  4,    7;
[3] 1,  9,   39,    87;
[4] 1, 16,  126,   608,   1553;
[5] 1, 25,  310,  2470,  12985,   36145;
[6] 1, 36,  645,  7560,  62595,  351252,  1037367;
[7] 1, 49, 1197, 19285, 225715, 1946259, 11481631,  35402983;
[8] 1, 64, 2044, 43232, 673190, 8011136, 71657404, 439552864, 1400424097;
		

Crossrefs

Cf. A138464 (type A), this sequence (type B), A343806 (type C), A343807 (type D).

Programs

  • Maple
    alias(W = LambertW):
    EhrB := exp(-W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t))/sqrt(1+W(-2*t*x)):
    ser := series(EhrB, x, 10): cx := n -> n!*coeff(ser, x, n):
    T := n -> seq(coeff(cx(n), t, k), k=0..n): seq(T(n), n = 0..9);
  • Mathematica
    P := ProductLog[-2 t x]; gf := 1/(E^((P (2 + P))/(4 t)) Sqrt[1 + P]);
    ser := Series[gf, {x, 0, 10}]; cx[n_] := n! Coefficient[ser, x, n];
    Table[CoefficientList[cx[n], t], {n, 0, 8}] // Flatten

A343806 T(n, k) = [x^k] n! [t^n] 1/(exp((V*(2 + 2*t + V))/(4*t))*sqrt(1 + V)) where V = W(-2*t*x) and W denotes the Lambert function. Table read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 6, 14, 1, 12, 66, 172, 1, 20, 192, 1080, 3036, 1, 30, 440, 4040, 23580, 69976, 1, 42, 870, 11600, 106620, 644568, 1991656, 1, 56, 1554, 28140, 364140, 3396960, 21170520, 67484880, 1, 72, 2576, 60592, 1037400, 13362272, 126973504, 811924032, 2652878864
Offset: 0

Views

Author

Peter Luschny, May 01 2021

Keywords

Comments

The rows of the triangle give the coefficients of the Ehrhart polynomials of integral Coxeter permutahedra of type C. These polynomials count lattice points in a dilated lattice polytope. For a definition see Ardila et al. (p. 1158), the generating functions of these polynomials for the classical root systems are given in theorem 5.2 (p. 1163).

Examples

			Triangle starts:
[0] 1;
[1] 1,  2;
[2] 1,  6,   14;
[3] 1, 12,   66,   172;
[4] 1, 20,  192,  1080,    3036;
[5] 1, 30,  440,  4040,   23580,    69976;
[6] 1, 42,  870, 11600,  106620,   644568,   1991656;
[7] 1, 56, 1554, 28140,  364140,  3396960,  21170520,  67484880;
[8] 1, 72, 2576, 60592, 1037400, 13362272, 126973504, 811924032, 2652878864;
		

Crossrefs

Cf. A138464 (type A), A343805 (type B), this sequence (type C), A343807 (type D).

Programs

  • Maple
    alias(W = LambertW):
    EhrC := exp(-(t+1)*W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t))/sqrt(1+W(-2*t*x)):
    ser := series(EhrC, x, 10): cx := n -> n!*coeff(ser, x, n):
    T := n -> seq(coeff(cx(n), t, k), k=0..n): seq(T(n), n = 0..8);
  • Mathematica
    P := ProductLog[-2 t x]; gf := 1/(E^((P (2 + 2 t + P))/(4 t)) Sqrt[1 + P]);
    ser := Series[gf, {x, 0, 10}]; cx[n_] := n! Coefficient[ser, x, n];
    Table[CoefficientList[cx[n], t], {n, 0, 8}] // Flatten

A343807 T(n, k) = [x^k] n! [t^n] 1/(exp((V*(2 - 2*t + V))/(4*t))*sqrt(1 + V)) where V = W(-2*t*x) and W denotes the Lambert function. Table read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 1, 6, 18, 32, 1, 12, 72, 280, 636, 1, 20, 200, 1320, 6060, 15744, 1, 30, 450, 4480, 32460, 166536, 470680, 1, 42, 882, 12320, 127260, 996408, 5526136, 16542336, 1, 56, 1568, 29232, 405720, 4384800, 36529920, 214436160, 669165840
Offset: 0

Views

Author

Peter Luschny, May 01 2021

Keywords

Comments

The rows of the triangle give the coefficients of the Ehrhart polynomials of integral Coxeter permutahedra of type D. These polynomials count lattice points in a dilated lattice polytope. For a definition see Ardila et al. (p. 1158), the generating functions of these polynomials for the classical root systems are given in theorem 5.2 (p. 1163).

Examples

			[0] 1;
[1] 1,  0;
[2] 1,  2,    2;
[3] 1,  6,   18,    32;
[4] 1, 12,   72,   280,    636;
[5] 1, 20,  200,  1320,   6060,   15744;
[6] 1, 30,  450,  4480,  32460,  166536,   470680;
[7] 1, 42,  882, 12320, 127260,  996408,  5526136,  16542336;
[8] 1, 56, 1568, 29232, 405720, 4384800, 36529920, 214436160, 669165840;
		

Crossrefs

Cf. A138464 (type A), A343805 (type B), A343806 (type C), this sequence (type D).

Programs

  • Maple
    alias(W = LambertW):
    EhrD := exp(-(1-t)*W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t)) / sqrt(1+W(-2*t*x)):
    ser := series(EhrD, x, 10): cx := n -> n!*coeff(ser, x, n):
    T := n -> seq(coeff(cx(n), t, k), k = 0..n): seq(T(n), n = 0..8);
  • Mathematica
    P := ProductLog[-2 t x]; gf := 1/(E^((P (2 - 2 t + P))/(4 t)) Sqrt[1 + P]);
    ser := Series[gf, {x, 0, 10}];  cx[n_] := n! Coefficient[ser, x, n];
    Table[If[n == 1, {1, 0}, CoefficientList[cx[n], t]], {n, 0, 8}] // Flatten

A143899 Triangle read by rows: T(n,k)=number of simple graphs on n labeled nodes with k edges containing at least one cycle subgraph, n>=3, 3<=k<=C(n,2).

Original entry on oeis.org

1, 4, 15, 6, 1, 10, 85, 252, 210, 120, 45, 10, 1, 20, 285, 1707, 5005, 6435, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 35, 735, 6972, 37457, 116280, 203490, 293930, 352716, 352716, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210, 21, 1, 56, 1610
Offset: 3

Views

Author

Alois P. Heinz, Sep 04 2008

Keywords

Examples

			T(4,3) = 4, because 4 simple graphs on 4 labeled nodes with 3 edges contain a cycle subgraph:
..1-2...1-2...1.2...1.2..
..|/.....\|...|\...../|..
..3.4...3.4...3-4...3-4..
Triangle begins:
1;
4,   15,    6,    1;
10,  85,  252,  210,  120,   45,   10,    1;
20, 285, 1707, 5005, 6435, 6435, 5005, 3003, 1365, 455, 105, 15, 1;
		

Crossrefs

Row sums give A143900. Cf. A084546, A138464, A007318.

Programs

  • Maple
    B:= proc(n) option remember; if n=0 then 0 else B(n-1) +n^(n-1) *x^n/n! fi end: BB:= proc(n) option remember; expand (B(n) -B(n)^2/2) end: f:= proc(k) option remember; if k=0 then 1 else unapply (f(k-1)(x) +x^k/k!, x) fi end: A:= proc(n,k) option remember; series(f(k)(BB(n)), x,n+1) end: aa:= (n,k)-> coeff (A(n,k), x,n) *n!: b:= (n,k)-> if k>=n then 0 else aa(n,n-k) -aa(n,n-k-1) fi: T:= (n,k)-> product (n*(n-1)/2-j, j=0..k-1)/k! -b(n,k): seq (seq (T(n,k), k=3..n*(n-1)/2), n=3..8);
  • Mathematica
    (* t = A138464 *) t[0, 0] = 1; t[n_, k_] /; (0 <= k <= n-1) := t[n, k] = Sum[(i+1)^(i-1)*Binomial[n-1, i]*t[n-i-1, k-i], {i, 0, k}]; t[, ] = 0; T[n_, k_] := Binomial[n*(n-1)/2, k]-t[n, k]; Table[Table[T[n, k], {k, 3, n*(n-1)/2}], {n, 3, 8}] // Flatten (* Jean-François Alcover, Feb 14 2014 *)

Formula

T(n,k) = A084546(n,k)-A138464(n,k).
Previous Showing 11-20 of 21 results. Next