cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A168628 Numbers n such that n and n+-1 have 4 distinct prime factors.

Original entry on oeis.org

37961, 44485, 45695, 50141, 51429, 55131, 55385, 61335, 63365, 64295, 67165, 68265, 68475, 70005, 70091, 71709, 72709, 76153, 80445, 81549, 81719, 82041, 84435, 85491, 86241, 90364, 95381, 97383, 98021, 99085, 99385, 99429, 99789, 100165, 100491, 100595
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A140078.

Programs

  • Mathematica
    f[n_]:=Length[FactorInteger[n]]; lst={};Do[If[f[n]>=4&&f[n-1]>=4&&f[n+1]>=4,AppendTo[lst,n]],{n,9!}];lst
    SequencePosition[PrimeNu[Range[110000]],{4,4,4}][[All,1]]+1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 27 2018 *)
  • PARI
    is(n)=omega(n)==4 && omega(n+1)==4 && omega(n-1)==4 \\ Charles R Greathouse IV, Jan 25 2025

Extensions

Corrected and extended by Harvey P. Dale, Apr 27 2018

A321502 Numbers m such that m and m+1 have at least 2, but m or m+1 has at least 3 prime divisors.

Original entry on oeis.org

65, 69, 77, 84, 90, 104, 105, 110, 114, 119, 129, 132, 140, 153, 154, 155, 164, 165, 170, 174, 182, 185, 186, 189, 194, 195, 203, 204, 209, 219, 220, 221, 230, 231, 234, 237, 245, 246, 252, 254, 258, 259, 260, 264, 265, 266, 272, 273, 275, 279, 284, 285, 286, 290, 294, 299, 300, 305
Offset: 1

Views

Author

M. F. Hasler, Nov 27 2018

Keywords

Comments

Since m and m+1 cannot have a common factor, m(m+1) has at least 2+3 prime divisors (= distinct prime factors), whence m+1 > sqrt(primorial(5)) ~ 48. It turns out that a(1)*(a(1)+1) = 2*3*5*11*13, i.e., the prime factor 7 is not present.

Crossrefs

Cf. A321493, A321494, A321495, A321496, A321497 (analog for k = 3, ..., 7 prime divisors).
Cf. A074851, A140077, A140078, A140079 (m and m+1 have exactly k = 2, 3, 4, 5 prime divisors).
Cf. A255346, A321503 .. A321506, A321489 (m and m+1 have at least 2, ..., 7 prime divisors).

Programs

  • PARI
    select( is_A321502(n)=vecmax(n=[omega(n), omega(n+1)])>2&&vecmin(n)>1, [1..500])

Formula

Equals A255346 \ A074851.

A168629 Numbers n such that n,n+1 and sum of this two numbers have at least 3 distinct prime factors.

Original entry on oeis.org

1105, 1130, 1462, 1644, 1742, 1767, 2014, 2222, 2232, 2260, 2337, 2365, 2397, 2464, 2541, 2667, 2684, 2697, 2702, 2755, 2821, 2914, 3074, 3115, 3195, 3289, 3332, 3477, 3484, 3514, 3552, 3619, 3657, 3685, 3782, 3783, 3842, 3965, 4014, 4088, 4122, 4147, 4277
Offset: 1

Views

Author

Keywords

Examples

			1105 = 5*13*17, 1106 = 2*7*79, 1105 + 1106 = 2211 = 3*11*67.
		

Crossrefs

Programs

  • Maple
    q:= n-> andmap(x-> nops(numtheory[factorset](x))>2, [n, n+1, 2*n+1]):
    select(q, [$1..4600])[];  # Alois P. Heinz, Jun 29 2021
  • Mathematica
    f[n_]:=Length[FactorInteger[n]]; lst={};Do[If[f[n]>=3&&f[n+1]>=3&&f[n+n+1]>=3,AppendTo[lst,n]],{n,8!}];lst

A168630 Numbers n such that n, n+1, and the sum of those two numbers each have 4 or more distinct prime factors.

Original entry on oeis.org

46189, 50634, 69597, 76797, 90117, 97954, 108205, 115804, 127347, 138957, 144627, 159340, 164020, 166022, 166497, 166705, 167205, 167485, 173194, 174454, 181670, 186294, 190014, 193154, 198789, 211029, 212134, 214225, 217217, 221815, 222547, 224146
Offset: 1

Views

Author

Keywords

Examples

			FactorInteger[46189]=11*13*17*19, FactorInteger[46190]=2*5*31*149, FactorInteger[46189+46190]=3*7*53*83,..
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; nops(numtheory:-factorset(n))>=4 end proc:
    filter:= n -> g(n) and g(n+1) and g(2*n+1):
    select(filter, [$1..300000]); # Robert Israel, May 09 2018
  • Mathematica
    f[n_]:=Length[FactorInteger[n]]; lst={};Do[If[f[n]>=4&&f[n+1]>=4&&f[n+n+1]>=4,AppendTo[lst,n]],{n,9!}];lst
    Select[Range[225000],Min[Thread[PrimeNu[{#,#+1,2#+1}]]]>3&](* Harvey P. Dale, Nov 11 2017 *)

Extensions

Definition modified and terms extended by Harvey P. Dale, Nov 11 2017

A247200 Odd numbers which are neither of the form p*2^m + 1 nor of the form p*2^m - 1 with p prime.

Original entry on oeis.org

71, 99, 101, 109, 131, 139, 155, 169, 181, 197, 199, 221, 229, 239, 241, 251, 259, 265, 281, 287, 289, 307, 309, 311, 323, 337, 339, 341, 349, 365, 371, 373, 379, 391, 401, 407, 409, 419, 431, 433, 439, 441, 443, 461, 469, 475, 485, 491, 493, 499, 505, 517, 519
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 18 2014

Keywords

Comments

For each n, the sequence has a set of n consecutive odd numbers.
For any n, the number 2*A140077(n) + 1 is in the sequence.
Every number of the form S*2^n + 1 or R*2^n - 1 with n > 0, where S is a composite SierpiƄski number and R is a composite Riesel number, is in the sequence.
Odd numbers n such that (n-1)/A007814(n-1) and (n+1)/A007814(n+1) are composite. - Robert Israel, Nov 19 2014

Crossrefs

Programs

  • Magma
    lst1:=[]; lst2:=[]; r:=519; t:=Floor(Log(2, r))-1; for m in [0..t] do e:=Floor(r/2^m); for p in [2..e] do if IsPrime(p) then a:=p*2^m-1; b:=p*2^m+1; if not a in lst1 then Append(~lst1, a); end if; if not b in lst1 then Append(~lst1, b); end if; end if; end for; end for; for n in [3..r by 2] do if not n in lst1 then Append(~lst2, n); end if; end for; lst2;
    
  • Maple
    filter:= proc(n)
      local m1,m2;
      m1:= padic[ordp](n-1,2);
      if n-1 = 2^m1 then return false fi;
      m2:= padic[ordp](n+1,2);
      n+1 <> 2^m2 and not isprime((n-1)/2^m1) and not isprime((n+1)/2^m2);
    end proc:
    select(filter, [seq(2*i+1,i=0..1000)]); # Robert Israel, Nov 19 2014
  • PARI
    b=0; forstep(n=1, 519, 2, c=2^floor(log(n)/log(2)); a=b; b=(n+1)/gcd(n+1, c); if(a>8&&!isprime(a)&&!isprime(b), print1(n, ", ")));
Previous Showing 11-15 of 15 results.