cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A141772 Primes of the form 3*x^2 + 5*x*y - 5*y^2 (as well as of the form 7*x^2 + 13*x*y + 3*y^2).

Original entry on oeis.org

3, 5, 7, 17, 23, 37, 73, 97, 107, 113, 163, 167, 173, 193, 197, 227, 233, 277, 283, 313, 317, 337, 347, 367, 397, 487, 503, 547, 607, 617, 643, 653, 673, 677, 683, 743, 787, 823, 827, 853, 857, 877, 887, 907, 947, 983, 997, 1013, 1093, 1117, 1153, 1163, 1187
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008

Keywords

Comments

Discriminant = 85. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

Examples

			a(1) = 3 because we can write 3 = 3*1^2 + 5*1*0 - 5*0^2 (or 3 = 7*0^2 + 13*0*1 + 3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A141773 (d=85). See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141750 (d=73). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

Extensions

More terms from Colin Barker, Apr 04 2015
Typo in crossrefs fixed by Colin Barker, Apr 05 2015

A155008 Primes p such that (p-a)*(p+a)-+a*p are primes,a=4.

Original entry on oeis.org

3, 5, 7, 11, 19, 29, 31, 59, 101, 139, 239, 271, 829, 1031, 1201, 1439, 1511, 1531, 2251, 2609, 3929, 4349, 4969, 5449, 5639, 5711, 5801, 5881, 5981, 6521, 6569, 6701, 6949, 6959, 8221, 8831, 9001, 9181, 9209, 9419, 9511, 9929, 10139, 10711, 11839, 11981
Offset: 1

Views

Author

Keywords

Comments

3*11-28=5, 3*11+28=61, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-4)*(p+4)-4*p]&&PrimeQ[(p-4)*(p+4)+4*p],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[1500]],AllTrue[(#-4)(#+4)+{4#,-4#},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 27 2020 *)

A155009 Primes p such that (p-a)*(p+a)-+a*p are primes,a=5.

Original entry on oeis.org

2, 7, 11, 17, 19, 23, 41, 43, 61, 67, 107, 109, 131, 137, 179, 197, 263, 269, 331, 353, 397, 641, 677, 743, 859, 941, 1163, 1171, 1213, 1303, 1319, 1433, 1447, 1453, 1543, 1601, 1783, 2221, 2351, 2371, 2417, 2503, 2657, 2689, 2791, 2797, 2909, 3037, 3301
Offset: 1

Views

Author

Keywords

Comments

1*12-35=-23, 1*12+35=47; 6*16-55=96-55=41, 6*16-55=96+55=151, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-5)*(p+5)-5*p]&&PrimeQ[(p-5)*(p+5)+5*p],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[500]],AllTrue[(#-5)(#+5)+{5#,-5#},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 01 2016 *)

A141778 Primes of the form 4*x^2 + 3*x*y - 5*y^2 (as well as of the form 8*x^2 + 11*x*y + y^2).

Original entry on oeis.org

2, 5, 11, 17, 47, 53, 67, 71, 73, 79, 89, 97, 107, 109, 131, 139, 157, 167, 173, 179, 199, 223, 227, 233, 251, 257, 263, 269, 271, 277, 283, 307, 311, 317, 331, 347, 367, 373, 401, 409, 443, 449, 461, 463, 467, 479, 487, 509, 523, 587, 601, 607, 613, 619, 631
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008

Keywords

Comments

Discriminant = 89. Class = 1. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
A subsequence of (and may possibly coincide with) A038977. - R. J. Mathar, Jul 22 2008

Examples

			a(1) = 2 because we can write 2 = 4*1^2 + 3*1*1 - 5*1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141750 (d=73). A141772, A141773 (d=85). A141776, A141777 (d=88). A141778 (d=89). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

Extensions

Typo in crossrefs fixed by Colin Barker, Apr 05 2015

A154942 Primes p such that (p-1)*p*(p+1)-p-2 and (p-1)*p*(p+1)+p+2 are primes.

Original entry on oeis.org

3, 5, 29, 71, 113, 263, 1103, 2339, 3203, 3413, 3593, 3659, 3719, 4421, 5939, 6269, 7841, 9011, 9029, 13121, 13841, 14423, 15671, 17033, 19073, 22079, 22811, 26783, 27851, 28949, 29303, 30839, 31973, 32063, 32141, 34301, 38543, 38873, 39119
Offset: 1

Views

Author

Keywords

Comments

2*3*4=24-3-2=19, 2*3*4=24+3+2=29, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*p*(p+1)-p-2]&&PrimeQ[(p-1)*p*(p+1)+p+2],AppendTo[lst,p]],{n,8!}];lst
    prQ[n_]:=Module[{x=n^3-n,y=n+2},And@@PrimeQ[{x+y,x-y}]]; Select[Prime[ Range[4200]],prQ] (* Harvey P. Dale, Jun 21 2012 *)

A266297 Numbers whose last digit is a square.

Original entry on oeis.org

0, 1, 4, 9, 10, 11, 14, 19, 20, 21, 24, 29, 30, 31, 34, 39, 40, 41, 44, 49, 50, 51, 54, 59, 60, 61, 64, 69, 70, 71, 74, 79, 80, 81, 84, 89, 90, 91, 94, 99, 100, 101, 104, 109, 110, 111, 114, 119, 120, 121, 124, 129, 130, 131, 134, 139, 140, 141, 144, 149
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 26 2015

Keywords

Comments

Numbers ending in 0, 1, 4 and 9.
Union of A008592, A017281, A017317 and A017377. - Hurt
None of these numbers are prime in Z[phi] (where phi = 1/2 + sqrt(5)/2 is the golden ratio), since the numbers in this sequence that are prime in Z can be expressed in the form (a - b sqrt(5))(a + b sqrt(5)). - Alonso del Arte, Dec 30 2015
Union of A197652 and A016897. - Wesley Ivan Hurt, Dec 31 2015
Union of A146763 and A090771. - Wesley Ivan Hurt, Jan 01 2016

Crossrefs

Programs

  • Magma
    [(10*n-11+(-1)^n+(4+2*(-1)^n)*(-1)^((2*n-1+(-1)^n) div 4))/4: n in [1..60]]; // Vincenzo Librandi, Dec 27 2015
    
  • Maple
    A266297:=n->(10*n-11+(-1)^n+(4+2*(-1)^n)*(-1)^((2*n-1+(-1)^n)/4))/4: seq(A266297(n), n=1..100);
  • Mathematica
    Table[(10 n - 11 + (-1)^n + (4 + 2 (-1)^n)*(-1)^((2 n - 1 + (-1)^n)/4))/4, {n, 50}] (* G. C. Greubel, Dec 27 2015 *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 4, 9, 10}, 60] (* Vincenzo Librandi, Dec 27 2015 *)
    CoefficientList[Series[x*(1 + 3*x + 5*x^2 + x^3)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Dec 30 2015 *)
    Flatten[Table[10n + {0, 1, 4, 9}, {n, 0, 19}]] (* Alonso del Arte, Dec 30 2015 *)
    Select[Range[0,150],MemberQ[{0,1,4,9},Mod[#,10]]&] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    is(n) = issquare(n%10); \\ Altug Alkan, Dec 29 2015

Formula

G.f.: x^2*(1 + 3*x + 5*x^2 + x^3)/((x - 1)^2*(1 + x + x^2 + x^3)).
a(n) = a(n - 1) + (n - 4) - a(n - 5) for n > 5.
a(n) = (10n - 11 + (-1)^n + (4 + 2(-1)^n) * (-1)^((2n - 1 + (-1)^n)/4))/4.
a(n+1) - a(n) = A091084(n+1) for n>0.
Sum_{n>=2} (-1)^n/a(n) = (14*sqrt(5)*arccoth(sqrt(5)) - 2*Pi*sqrt(1-2/sqrt(5)) + 16*log(2) + 5*log(5))/40. - Amiram Eldar, Jul 30 2024

A154941 Sophie Germain primes in A154939.

Original entry on oeis.org

3, 5, 11, 131, 419, 1409, 2069, 3449, 3761, 3911, 6899, 7079, 7151, 9539, 9791, 10529, 10691, 11321, 11831, 14741, 15269, 17291, 22079, 27281, 27809, 30449, 34439, 45131, 48479, 52289, 54251, 64439, 70901, 75389, 78839, 85691, 101411, 102911
Offset: 1

Views

Author

Keywords

Comments

2*3+1=7, 5*2+1=11, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*(p+1)-p]&&PrimeQ[(p-1)*(p+1)+p],If[PrimeQ[p*2+1],AppendTo[lst,p]]],{n,8!}];lst
    Select[Prime[Range[10000]],AllTrue[{2#+1,(#-1)(#+1)+#,(#-1)(#+1)-#},PrimeQ]&] (* Harvey P. Dale, Sep 21 2023 *)

A154944 Primes p such that (p-1)*p*(p+1)-p+2 and (p-1)*p*(p+1)+p-2 are primes.

Original entry on oeis.org

19, 37, 67, 151, 367, 859, 1471, 2791, 2971, 3061, 4357, 4447, 4507, 6367, 7159, 7237, 7591, 8311, 8647, 11617, 12211, 12601, 13249, 14947, 15271, 15661, 16699, 18097, 19777, 20149, 20347, 20947, 21019, 22741, 23311, 23857, 24019, 25867, 26701
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*p*(p+1)-p+2]&&PrimeQ[(p-1)*p*(p+1)+p-2],AppendTo[lst,p]],{n,8!}];lst

A155010 Primes p such that (p-a)*(p+a)-+a*p and (p-b)*(p+b)-+b*p are primes, a=2,b=3.

Original entry on oeis.org

7, 37, 587, 28703, 35677, 36857, 99367, 326707, 361687, 578167, 613573, 619007, 656407, 688783, 702203, 713467, 874823, 922027, 940573, 1045763, 1057907, 1244687, 1371157, 1419697, 1555187, 1665767, 1687187, 1687327, 1799453
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-2)*(p+2)-2*p]&&PrimeQ[(p-2)*(p+2)+2*p]&&PrimeQ[(p-3)*(p+3)-3*p]&&PrimeQ[(p-3)*(p+3)+3*p],AppendTo[lst,p]],{n,9!}];lst
    Select[Prime[Range[200000]],AllTrue[Flatten[{(#-2)(#+2)+{2#,-2#},(#-3)(#+3)+ {3#,-3#}}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 26 2015 *)
Previous Showing 11-19 of 19 results.