cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A141993 Primes congruent to 17 mod 29.

Original entry on oeis.org

17, 191, 307, 829, 887, 1061, 1409, 1583, 1699, 1873, 1931, 2221, 2801, 2917, 3323, 3613, 3671, 4019, 4483, 4657, 4831, 4889, 5179, 5237, 5527, 5701, 6397, 6571, 6803, 6977, 7151, 7499, 7673, 7789, 7963, 8311, 8369, 8543, 9007, 9181, 9239, 9413, 9587, 10399
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 03 2016

A141994 Primes congruent to 18 mod 29.

Original entry on oeis.org

47, 163, 337, 569, 743, 859, 1033, 1091, 1381, 1439, 1613, 1787, 2251, 2309, 2657, 3121, 3469, 3527, 3643, 3701, 4049, 4339, 4397, 4513, 4861, 4919, 5209, 5441, 5557, 6079, 6311, 6427, 6659, 6833, 6949, 7297, 7529, 7703, 7877, 7993, 8167, 8573, 8689, 8747
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 03 2016

A141995 Primes congruent to 19 mod 29.

Original entry on oeis.org

19, 193, 251, 367, 541, 599, 773, 947, 1063, 1237, 1759, 1933, 2281, 2339, 2687, 2803, 2861, 3209, 3499, 3557, 3673, 3847, 4021, 4079, 4253, 5297, 5413, 5471, 6689, 6863, 7211, 7559, 7907, 8081, 8429, 8719, 8893, 8951, 9067, 9241, 9473, 10111, 10169, 10343
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 03 2016

A141996 Primes congruent to 20 mod 29.

Original entry on oeis.org

107, 223, 281, 397, 571, 919, 977, 1093, 1151, 1499, 1789, 1847, 2137, 2311, 2543, 2659, 2833, 3181, 3413, 3529, 3761, 3877, 4051, 4283, 4457, 5153, 5443, 5501, 5791, 5849, 6197, 6661, 6719, 7589, 7879, 7937, 8053, 8111, 8807, 8923, 9619, 9677, 9851, 9967
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 03 2016

A141997 Primes congruent to 21 mod 29.

Original entry on oeis.org

79, 137, 311, 601, 659, 1123, 1181, 1297, 1471, 1877, 1993, 2341, 2399, 2689, 3037, 3559, 3617, 3733, 3907, 4139, 4603, 4951, 5009, 5531, 5647, 5821, 5879, 6053, 6343, 6691, 7039, 7213, 7561, 7793, 8431, 8663, 8779, 8837, 9011, 9127, 9533, 9649, 10867, 11273
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 03 2016

A141998 Primes congruent to 22 mod 29.

Original entry on oeis.org

109, 167, 283, 457, 631, 863, 1153, 1327, 1559, 1733, 1907, 2081, 2371, 2719, 2777, 3067, 3299, 3821, 4111, 4517, 4691, 5039, 5387, 5503, 5851, 6199, 6257, 6373, 6547, 6779, 7069, 7127, 7243, 7417, 7591, 7649, 7823, 8171, 8287, 8461, 8693, 8867, 9041, 9157
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 03 2016

A142000 Primes congruent to 24 mod 29.

Original entry on oeis.org

53, 227, 401, 691, 1039, 1097, 1213, 1619, 2083, 2141, 2663, 2837, 2953, 3011, 3301, 3359, 3533, 3823, 3881, 4229, 4519, 4751, 5099, 5273, 5563, 5737, 6143, 6317, 6491, 6607, 6781, 7013, 7129, 7187, 7477, 7883, 8231, 8521, 8753, 9043, 9391, 9623, 9739
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 03 2016

A142001 Primes congruent to 25 mod 29.

Original entry on oeis.org

83, 199, 257, 373, 431, 547, 953, 1069, 1301, 1823, 1997, 2113, 2287, 2693, 3041, 3331, 3389, 3853, 3911, 4027, 4201, 4259, 4549, 4723, 5303, 5419, 5477, 5651, 6173, 6521, 6637, 6869, 7043, 7159, 7333, 7507, 7681, 8087, 8377, 8609, 8783, 9421, 9479, 9769
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 03 2016

A142002 Primes congruent to 26 mod 29.

Original entry on oeis.org

113, 229, 461, 577, 751, 809, 983, 1447, 1621, 2027, 2143, 2549, 2897, 3187, 3361, 3593, 3709, 3767, 4057, 4231, 4289, 4463, 4637, 5101, 5333, 5449, 5507, 5623, 6029, 6203, 6551, 6841, 6899, 7247, 7537, 8059, 8117, 8233, 8291, 8581, 8929, 9103, 9161, 9277
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 03 2016

A248572 a(n) = 29*n + 1.

Original entry on oeis.org

1, 30, 59, 88, 117, 146, 175, 204, 233, 262, 291, 320, 349, 378, 407, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248, 1277, 1306, 1335, 1364, 1393, 1422
Offset: 0

Views

Author

Karl V. Keller, Jr., Oct 08 2014

Keywords

Comments

Numbers congruent to 1 mod 29.
Both A141977 and A059256 give the primes in this sequence.

Examples

			For n = 5, 29n + 1 = 145 + 1 = 146.
		

Crossrefs

Cf. A141977 (Primes congruent to 1 mod 29).
Cf. A059256 (Primes p such that x^29 = 2 has no solution mod p).
Cf. A195819 (multiples of 29).

Programs

  • GAP
    List([0..60], n-> 29*n+1); # G. C. Greubel, May 24 2019
  • Magma
    [29*n+1: n in [0..60]]; // Vincenzo Librandi, Oct 26 2014
    
  • Mathematica
    29Range[0, 60] + 1 (* Alonso del Arte, Oct 09 2014 *)
    CoefficientList[Series[(1+28x)/(1-x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 26 2014 *)
    LinearRecurrence[{2,-1},{1,30},50] (* Harvey P. Dale, Oct 08 2019 *)
  • PARI
    vector(60, n, n--; 29*n+1) \\ Derek Orr, Oct 08 2014
    
  • Python
    for n in range(61):
        print(29*n+1, end=', ')
    
  • Sage
    [29*n+1 for n in (0..60)] # G. C. Greubel, May 24 2019
    

Formula

a(n) = 29*n + 1.
G.f.: (1+28*x)/(1-x)^2. - Vincenzo Librandi, Oct 26 2014 [corrected by Georg Fischer, May 24 2019]
E.g.f.: (1 + 29*x)*exp(x). - G. C. Greubel, May 24 2019
Previous Showing 21-30 of 30 results.