cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A143550 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4*A(-x)^2.

Original entry on oeis.org

1, 1, 2, 11, 38, 257, 1040, 7646, 33374, 256718, 1171454, 9270560, 43558064, 351490167, 1686018600, 13799914556, 67223728270, 556203232266, 2741975026412, 22880729474777, 113875773363274, 956800135969601
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2008

Keywords

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 11*x^3 + 38*x^4 + 257*x^5 + 1040*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 72*x^3 + 333*x^4 + 1936*x^5 + 9966*x^6 +...
A(-x)^2 = 1 - 2*x + 5*x^2 - 26*x^3 + 102*x^4 - 634*x^5 + 2867*x^6 -+...
A(x)^2*A(-x) = 1 + x + 5*x^2 + 14*x^3 + 102*x^4 + 348*x^5 + 2867*x^6 +...
A(x)*A(-x) = 1 + 3*x^2 + 58*x^4 + 1597*x^6 + 51406*x^8 + 1807747*x^10 +...
[A(x)*A(-x)]^6 = 1 + 18*x^2 + 483*x^4 + 15342*x^6 + 535161*x^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,2*n,A=1+x*A^4*subst(A^2,x,-x));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) + A(-x) = 1 + [A(x)*A(-x)] + x^2*[A(x)*A(-x)]^6.
G.f. satisfies: 1 - 4*y + 6*y^2 - 4*y^3 + y^4 - 2*x*y^6 + 4*x*y^7 - x*y^8 - x*y^9 + x^2*y^12 = 0, where y=A(x). - Vaclav Kotesovec, Mar 25 2014
a(n) ~ c / (sqrt(Pi)*n^(3/2)*r^n), where r = sqrt(22444621 + 5142958*sqrt(19))/46656 = 0.143559867369277217..., c = sqrt((13 - 49/sqrt(19))/3)/3 = 0.255214437... if n is even, and c = sqrt((73 - 1/sqrt(19))/3)/15 = 0.328341701... if n is odd. - Vaclav Kotesovec, Mar 25 2014
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_6>=0 and x_1+x_2+...+x_6=n-1} (-1)^(x_1+x_2) * Product_{k=1..6} a(x_k). - Seiichi Manyama, Jul 08 2025

A143551 G.f. A(x) satisfies A(x) = 1 + x*A(x)^5*A(-x).

Original entry on oeis.org

1, 1, 4, 29, 196, 1781, 14000, 139234, 1176340, 12283166, 108258380, 1165438808, 10561185568, 116096795195, 1072964739264, 11975785105572, 112313638368948, 1268177365551626, 12029082865935512, 137067430786661911
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2008

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 29*x^3 + 196*x^4 + 1781*x^5 + 14000*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 30*x^2 + 235*x^3 + 1845*x^4 + 16576*x^5 + 144270*x^6 +...
A(x)*A(-x) = 1 + 7*x^2 + 350*x^4 + 25165*x^6 + 2121330*x^8 +...
[A(x)*A(-x)]^6 = 1 + 42*x^2 + 2835*x^4 + 231350*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*A^5*subst(A,x,-x));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) + A(-x) = 1 + [A(x)*A(-x)] + x^2*[A(x)*A(-x)]^6.
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_6>=0 and x_1+x_2+...+x_6=n-1} (-1)^x_1 * Product_{k=1..6} a(x_k). - Seiichi Manyama, Jul 08 2025

A143553 G.f. A(x) satisfies A(x) = 1 + x*A(x)^5*A(-x)^3.

Original entry on oeis.org

1, 1, 2, 14, 50, 432, 1818, 17082, 77714, 763967, 3637718, 36786268, 180481258, 1860798032, 9324573430, 97502825964, 496344066386, 5245970686152, 27032002846992, 288124627083382, 1499144278319270, 16087838913122064
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2008

Keywords

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 14*x^3 + 50*x^4 + 432*x^5 + 1818*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 20*x^2 + 120*x^3 + 635*x^4 + 4301*x^5 + 25360*x^6 +...
A(-x)^3 = 1 - 3*x + 9*x^2 - 55*x^3 + 252*x^4 - 1818*x^5 + 9560*x^6 -+...
A(x)*A(-x) = 1 + 3*x^2 + 76*x^4 + 2776*x^6 + 118940*x^8 +...
[A(x)*A(-x)]^8 = 1 + 24*x^2 + 860*x^4 + 36488*x^6 + 1700198*x^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*A^5*subst(A^3,x,-x));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) + A(-x) = 1 + [A(x)*A(-x)] + x^2*[A(x)*A(-x)]^8.
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_8>=0 and x_1+x_2+...+x_8=n-1} (-1)^(x_1+x_2+x_3) * Product_{k=1..8} a(x_k). - Seiichi Manyama, Jul 08 2025

A143552 G.f. A(x) satisfies A(x) = 1 + x*A(x)^5*A(-x)^2.

Original entry on oeis.org

1, 1, 3, 22, 115, 1048, 6418, 63784, 421195, 4386273, 30271136, 324599018, 2306033386, 25228297188, 182938978344, 2030788315648, 14952369357211, 167836915812087, 1250429798513035, 14158770843121424, 106483223789898776
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2008

Keywords

Examples

			G.f. A(x) = 1 + x + 3*x^2 + 22*x^3 + 115*x^4 + 1048*x^5 + 6418*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 25*x^2 + 180*x^3 + 1200*x^4 + 9851*x^5 + 73195*x^6 +...
A(-x)^2 = 1 - 2*x + 7*x^2 - 50*x^3 + 283*x^4 - 2458*x^5 + 16106*x^6 -+...
A(x)*A(-x) = 1 + 5*x^2 + 195*x^4 + 10946*x^6 + 720443*x^8 +...
[A(x)*A(-x)]^7 = 1 + 35*x^2 + 1890*x^4 + 121947*x^6 + 8674036*x^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*A^5*subst(A^2,x,-x));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) + A(-x) = 1 + [A(x)*A(-x)] + x^2*[A(x)*A(-x)]^7.
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_7>=0 and x_1+x_2+...+x_7=n-1} (-1)^(x_1+x_2) * Product_{k=1..7} a(x_k). - Seiichi Manyama, Jul 08 2025

A143555 G.f. satisfies: A(x) = 1 + x*A(x)^2/A(-x)^2.

Original entry on oeis.org

1, 1, 4, 8, 28, 80, 308, 984, 3980, 13472, 56164, 197032, 838396, 3013872, 13015188, 47624568, 207971436, 771336512, 3397886660, 12736715592, 56502898140, 213618833808, 953139545076, 3629043226392, 16270547827020, 62317467147744
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2008

Keywords

Comments

Specific values: A(2/9) = 17/9 and A(-2/9) = 17/18.
Radius of convergence: r = sqrt(2*sqrt(3)-3)/3 = 0.2270833462...
with A(r) = (2 + sqrt(1-3*r))*(1+r^2)/(1+r) = 2.19775350...
and A(-r) = (2 - sqrt(1+3*r))*(1+r^2)/(1-r) = 3*(1+r^2) - A(r) = 0.9569470...
At x=r, the equation (*) (1+x^2)^2 - 2*(1+x^2)*y + (1+x)*y^2 - x*y^3 = 0, which is satisfied by y = A(x), factors out to: (y - A(r))^2 * (y - A(r)*(1+r^2)/(2*(A(r)-1-r^2))) = 0; this gives the relation: (A(r)-1-r^2)*(3+3*r^2-A(r)) = r*A(r)^2. At x>r, the equation (*) admits complex solutions for y.

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 8*x^3 + 28*x^4 + 80*x^5 + 308*x^6 +...
A(x)/A(-x) = 1 + 2*x + 2*x^2 + 10*x^3 + 18*x^4 + 98*x^5 + 210*x^6 +...
where 1 - (1+x^2)/A(x) = x*A(x)/A(-x).
Related expansions:
A(x)^2/A(-x)^2 = 1 + 4*x + 8*x^2 + 28*x^3 + 80*x^4 + 308*x^5 +...
A(x)^2 = 1 + 2*x + 9*x^2 + 24*x^3 + 88*x^4 + 280*x^5 + 1064*x^6 +...
where A(x)^2/A(-x)^2 = A(x)^2 + x + x*A(-x).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*A^2/subst(A^2,x,-x));polcoeff(A,n)}

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) (1+x^2)^2 - 2*(1+x^2)*A(x) + (1+x)*A(x)^2 - x*A(x)^3 = 0.
(2) A(x) = 1 + x*A(x)^2 + x^2 + x^2*A(-x).
(3) A(x) = 1 + x^2 + x*A(x)^2/A(-x).
(4) A(x) = 1 + x^2/(1 - A(-x)).
(5) A(x) = 1 + ( 1 - (1+x^2)/A(x) )^2/x.
(6) A(x) = (1+x^2)*G(x) where G(x) = 1 + x*G(x)^2/G(-x) is the g.f. of A143339.
Recurrence: (n-1)*(n+1)*(4*n^3 - 32*n^2 + 71*n - 30)*a(n) = 6*(8*n^3 - 56*n^2 + 101*n - 10)*a(n-1) + 6*(12*n^5 - 132*n^4 + 499*n^3 - 700*n^2 + 102*n + 305)*a(n-2) - 18*(n-4)*(8*n - 25)*a(n-3) + 27*(n-5)*(n-4)*(4*n^3 - 20*n^2 + 19*n + 13)*a(n-4). - Vaclav Kotesovec, Dec 29 2013
a(n) ~ c * 3^(n-1) * 2*sqrt(6*sqrt(3)-6 + sqrt(9+6*sqrt(3))) / (2*sqrt(Pi) * (2*sqrt(3)-3)^(n/2+1/4) * n^(3/2)), where c = 4/(2+12^(1/4)) if n is even and c = 12/(6+12^(3/4)) if n is odd. - Vaclav Kotesovec, Dec 29 2013

A143549 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4*A(-x).

Original entry on oeis.org

1, 1, 3, 17, 85, 598, 3473, 26668, 166429, 1340079, 8724438, 72374714, 484498327, 4102336176, 28009706440, 240729330116, 1668007246157, 14499527706129, 101618389067849, 891275643857227, 6303425058175018, 55686806813191060
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2008

Keywords

Examples

			G.f. A(x) = 1 + x + 3*x^2 + 17*x^3 + 85*x^4 + 598*x^5 + 3473*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 18*x^2 + 108*x^3 + 635*x^4 + 4348*x^5 + 28336*x^6 +...
A(x)*A(-x) = 1 + 5*x^2 + 145*x^4 + 5971*x^6 + 287253*x^8 +...
[A(x)*A(-x)]^5 = 1 + 25*x^2 + 975*x^4 + 45605*x^6 + 2355490*x^8 +...
		

Crossrefs

Programs

  • Maple
    S:= series(RootOf(_Z^15*x^3-_Z^12*x^2+_Z^11*x^2-_Z^4+4*_Z^3-6*_Z^2+4*_Z-1),x,31):
    seq(coeff(S,x,i),i=0..30); # Robert Israel, Jul 10 2017
  • Mathematica
    nmax = 21; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x*A[x]^4*A[-x]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,2*n,A=1+x*A^4*subst(A^1,x,-x));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) + A(-x) = 1 + [A(x)*A(-x)] + x^2*[A(x)*A(-x)]^5.
G.f. satisfies: -x^3*A(x)^15+x^2*A(x)^12-x^2*A(x)^11+A(x)^4-4*A(x)^3+6*A(x)^2-4*A(x)+1 = 0. - Robert Israel, Jul 10 2017
a(0) = 1; a(n) = Sum_{i, j, k, l, m>=0 and i+j+k+l+m=n-1} (-1)^i * a(i) * a(j) * a(k) * a(l) * a(m). - Seiichi Manyama, Jul 08 2025

A192893 Number of symmetric 11-ary factorizations of the n-cycle (1,2...n).

Original entry on oeis.org

1, 1, 1, 6, 11, 81, 176, 1406, 3311, 27636, 68211, 585162, 1489488, 13019909, 33870540, 300138696, 793542167, 7105216833, 19022318084, 171717015470, 464333035881, 4219267597578, 11502251937176, 105085831400550, 288417894029200, 2647012241261856, 7306488667126803
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2011

Keywords

Comments

The six sequences displayed in Table 1 of the Bousquet-Lamathe reference are A047749, A143546, A143547, A143554, this sequence, and A192894. From this one should be able to guess a g.f.
Number of achiral noncrossing partitions composed of n blocks of size 11. - Andrew Howroyd, Feb 08 2024

Crossrefs

Column k=11 of A369929 and k=12 of A370062.
Cf. A143048.

Programs

  • PARI
    a(n)={my(m=n\2, p=5*(n%2)+1); binomial(11*m+p-1, m)*p/(10*m+p)} \\ Andrew Howroyd, Feb 08 2024

Formula

From Andrew Howroyd, Feb 08 2024: (Start)
a(2n) = binomial(11*n,n)/(10*n+1); a(2n+1) = binomial(11*n+5,n)*6/(10*n+6).
G.f. A(x) satisfies A(x) = 1 + x*A(x)^6*A(-x)^5. (End)
From Seiichi Manyama, Jul 07 2025: (Start)
G.f. A(x) satisfies A(x)*A(-x) = (A(x) + A(-x))/2 = G(x^2), where G(x) = 1 + x*G(x)^11 is the g.f. of A230388.
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_6>=0 and x_1+2*(x_2+x_3+...+x_6)=n-1} a(x_1) * Product_{k=2..6} a(2*x_k). (End)
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_11>=0 and x_1+x_2+...+x_11=n-1} (-1)^(x_1+x_2+x_3+x_4+x_5) * Product_{k=1..11} a(x_k). - Seiichi Manyama, Jul 09 2025

Extensions

a(11) onwards from Andrew Howroyd, Jan 26 2024
a(0)=1 prepended by Andrew Howroyd, Feb 08 2024

A192894 Number of symmetric 13-ary factorizations of the n-cycle (1,2...n).

Original entry on oeis.org

1, 1, 1, 7, 13, 112, 247, 2310, 5525, 53998, 135408, 1360289, 3518515, 36017352, 95223414, 988172368, 2655417765, 27844071255, 75769712590, 801012669457, 2201663313200, 23428926096576, 64924369564353, 694644371065372, 1938034271677595, 20829931845958872, 58448142042957576
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2011

Keywords

Comments

The six sequences displayed in Table 1 of the Bousquet-Lamathe reference are A047749, A143546, A143547, A143554, A192893, A192894. From this one should be able to guess a g.f.

Crossrefs

Column k=13 of A369929 and k=14 of A370062.
Cf. A143049.

Formula

From Seiichi Manyama, Jul 07 2025: (Start)
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x)*A(-x))^6 ).
G.f. A(x) satisfies A(x)*A(-x) = (A(x) + A(-x))/2 = G(x^2), where G(x) = 1 + x*G(x)^13.
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_7>=0 and x_1+2*(x_2+x_3+...+x_7)=n-1} a(x_1) * Product_{k=2..7} a(2*x_k). (End)
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_13>=0 and x_1+x_2+...+x_13=n-1} (-1)^(x_1+x_2+x_3+x_4+x_5+x_6) * Product_{k=1..13} a(x_k). - Seiichi Manyama, Jul 09 2025

Extensions

a(11) onwards from Andrew Howroyd, Jan 26 2024
a(0)=1 prepended by Seiichi Manyama, Jul 07 2025
Previous Showing 11-18 of 18 results.