A143554
G.f. A(x) satisfies A(x) = 1 + x*A(x)^5*A(-x)^4.
Original entry on oeis.org
1, 1, 1, 5, 9, 55, 117, 775, 1785, 12350, 29799, 211876, 527085, 3818430, 9706503, 71282640, 184138713, 1366368375, 3573805950, 26735839650, 70625252863, 531838637759, 1416298046436, 10723307329700, 28748759731965, 218658647805780, 589546754316126
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 5*x^3 + 9*x^4 + 55*x^5 + 117*x^6 + 775*x^7 +...
Let G(x) = 1 + x*G(x)^9 be the g.f. of A062994, then
G(x^2) = A(x)*A(-x) and A(x) = G(x^2) + x*G(x^2)^5 where
G(x) = 1 + x + 9*x^2 + 117*x^3 + 1785*x^4 + 29799*x^5 + 527085*x^6 +...
G(x)^5 = 1 + 5*x + 55*x^2 + 775*x^3 + 12350*x^4 + 211876*x^5 +...
-
terms = 25;
A[] = 1; Do[A[x] = 1 + x A[x]^5 A[-x]^4 + O[x]^terms // Normal, {terms}];
CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *)
-
{a(n)=my(A=1+x*O(x^n));for(i=0,n,A=1+x*A^5*subst(A^4,x,-x));polcoef(A,n)}
-
{a(n)=my(m=n\2,p=4*(n%2)+1);binomial(9*m+p-1,m)*p/(8*m+p)}
A143547
G.f. A(x) satisfies A(x) = 1 + x*A(x)^4*A(-x)^3.
Original entry on oeis.org
1, 1, 1, 4, 7, 34, 70, 368, 819, 4495, 10472, 59052, 141778, 814506, 1997688, 11633440, 28989675, 170574723, 430321633, 2552698720, 6503352856, 38832808586, 99726673130, 598724403680, 1547847846090, 9335085772194, 24269405074740, 146936230074004, 383846168712104
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 7*x^4 + 34*x^5 + 70*x^6 + 368*x^7 + ...
Let G(x) = 1 + x*G(x)^7 be the g.f. of A002296, then
A(x)*A(-x) = G(x^2) and A(x) = G(x^2) + x*G(x^2)^4 where
G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 + ...
G(x)^4 = 1 + 4*x + 34*x^2 + 368*x^3 + 4495*x^4 + 59052*x^5 + ...
form the bisections of A(x).
By definition, A(x) = 1 + x*A(x)^4*A(-x)^3 where
A(x)^4 = 1 + 4*x + 10*x^2 + 32*x^3 + 95*x^4 + 332*x^5 + 1074*x^6 + ...
A(-x)^3 = 1 - 3*x + 6*x^2 - 19*x^3 + 51*x^4 - 183*x^5 + 550*x^6 -+ ...
-
terms = 26;
A[] = 1; Do[A[x] = 1 + x A[x]^4 A[-x]^3 + O[x]^terms // Normal, {terms}];
CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *)
-
{a(n)=my(A=1+O(x^(n+1)));for(i=0,n,A=1+x*A^4*subst(A^3,x,-x));polcoef(A,n)}
-
{a(n)=my(m=n\2,p=3*(n%2)+1);binomial(7*m+p-1,m)*p/(6*m+p)}
A143551
G.f. A(x) satisfies A(x) = 1 + x*A(x)^5*A(-x).
Original entry on oeis.org
1, 1, 4, 29, 196, 1781, 14000, 139234, 1176340, 12283166, 108258380, 1165438808, 10561185568, 116096795195, 1072964739264, 11975785105572, 112313638368948, 1268177365551626, 12029082865935512, 137067430786661911
Offset: 0
G.f. A(x) = 1 + x + 4*x^2 + 29*x^3 + 196*x^4 + 1781*x^5 + 14000*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 30*x^2 + 235*x^3 + 1845*x^4 + 16576*x^5 + 144270*x^6 +...
A(x)*A(-x) = 1 + 7*x^2 + 350*x^4 + 25165*x^6 + 2121330*x^8 +...
[A(x)*A(-x)]^6 = 1 + 42*x^2 + 2835*x^4 + 231350*x^6 +...
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*A^5*subst(A,x,-x));polcoeff(A,n)}
A143553
G.f. A(x) satisfies A(x) = 1 + x*A(x)^5*A(-x)^3.
Original entry on oeis.org
1, 1, 2, 14, 50, 432, 1818, 17082, 77714, 763967, 3637718, 36786268, 180481258, 1860798032, 9324573430, 97502825964, 496344066386, 5245970686152, 27032002846992, 288124627083382, 1499144278319270, 16087838913122064
Offset: 0
G.f. A(x) = 1 + x + 2*x^2 + 14*x^3 + 50*x^4 + 432*x^5 + 1818*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 20*x^2 + 120*x^3 + 635*x^4 + 4301*x^5 + 25360*x^6 +...
A(-x)^3 = 1 - 3*x + 9*x^2 - 55*x^3 + 252*x^4 - 1818*x^5 + 9560*x^6 -+...
A(x)*A(-x) = 1 + 3*x^2 + 76*x^4 + 2776*x^6 + 118940*x^8 +...
[A(x)*A(-x)]^8 = 1 + 24*x^2 + 860*x^4 + 36488*x^6 + 1700198*x^8 +...
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*A^5*subst(A^3,x,-x));polcoeff(A,n)}
A143552
G.f. A(x) satisfies A(x) = 1 + x*A(x)^5*A(-x)^2.
Original entry on oeis.org
1, 1, 3, 22, 115, 1048, 6418, 63784, 421195, 4386273, 30271136, 324599018, 2306033386, 25228297188, 182938978344, 2030788315648, 14952369357211, 167836915812087, 1250429798513035, 14158770843121424, 106483223789898776
Offset: 0
G.f. A(x) = 1 + x + 3*x^2 + 22*x^3 + 115*x^4 + 1048*x^5 + 6418*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 25*x^2 + 180*x^3 + 1200*x^4 + 9851*x^5 + 73195*x^6 +...
A(-x)^2 = 1 - 2*x + 7*x^2 - 50*x^3 + 283*x^4 - 2458*x^5 + 16106*x^6 -+...
A(x)*A(-x) = 1 + 5*x^2 + 195*x^4 + 10946*x^6 + 720443*x^8 +...
[A(x)*A(-x)]^7 = 1 + 35*x^2 + 1890*x^4 + 121947*x^6 + 8674036*x^8 +...
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*A^5*subst(A^2,x,-x));polcoeff(A,n)}
A143549
G.f. A(x) satisfies A(x) = 1 + x*A(x)^4*A(-x).
Original entry on oeis.org
1, 1, 3, 17, 85, 598, 3473, 26668, 166429, 1340079, 8724438, 72374714, 484498327, 4102336176, 28009706440, 240729330116, 1668007246157, 14499527706129, 101618389067849, 891275643857227, 6303425058175018, 55686806813191060
Offset: 0
G.f. A(x) = 1 + x + 3*x^2 + 17*x^3 + 85*x^4 + 598*x^5 + 3473*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 18*x^2 + 108*x^3 + 635*x^4 + 4348*x^5 + 28336*x^6 +...
A(x)*A(-x) = 1 + 5*x^2 + 145*x^4 + 5971*x^6 + 287253*x^8 +...
[A(x)*A(-x)]^5 = 1 + 25*x^2 + 975*x^4 + 45605*x^6 + 2355490*x^8 +...
-
S:= series(RootOf(_Z^15*x^3-_Z^12*x^2+_Z^11*x^2-_Z^4+4*_Z^3-6*_Z^2+4*_Z-1),x,31):
seq(coeff(S,x,i),i=0..30); # Robert Israel, Jul 10 2017
-
nmax = 21; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x*A[x]^4*A[-x]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,2*n,A=1+x*A^4*subst(A^1,x,-x));polcoeff(A,n)}
Showing 1-6 of 6 results.
Comments