cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A143547 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4*A(-x)^3.

Original entry on oeis.org

1, 1, 1, 4, 7, 34, 70, 368, 819, 4495, 10472, 59052, 141778, 814506, 1997688, 11633440, 28989675, 170574723, 430321633, 2552698720, 6503352856, 38832808586, 99726673130, 598724403680, 1547847846090, 9335085772194, 24269405074740, 146936230074004, 383846168712104
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2008

Keywords

Comments

Number of achiral noncrossing partitions composed of n blocks of size 7. - Andrew Howroyd, Feb 08 2024

Examples

			G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 7*x^4 + 34*x^5 + 70*x^6 + 368*x^7 + ...
Let G(x) = 1 + x*G(x)^7 be the g.f. of A002296, then
A(x)*A(-x) = G(x^2) and A(x) = G(x^2) + x*G(x^2)^4 where
G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 + ...
G(x)^4 = 1 + 4*x + 34*x^2 + 368*x^3 + 4495*x^4 + 59052*x^5 + ...
form the bisections of A(x).
By definition, A(x) = 1 + x*A(x)^4*A(-x)^3 where
A(x)^4 = 1 + 4*x + 10*x^2 + 32*x^3 + 95*x^4 + 332*x^5 + 1074*x^6 + ...
A(-x)^3 = 1 - 3*x + 6*x^2 - 19*x^3 + 51*x^4 - 183*x^5 + 550*x^6 -+ ...
		

Crossrefs

Column k=7 of A369929 and k=8 of A370062.
Cf. A002296 (bisection), A143546.

Programs

  • Mathematica
    terms = 26;
    A[] = 1; Do[A[x] = 1 + x A[x]^4 A[-x]^3 + O[x]^terms // Normal, {terms}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *)
  • PARI
    {a(n)=my(A=1+O(x^(n+1)));for(i=0,n,A=1+x*A^4*subst(A^3,x,-x));polcoef(A,n)}
    
  • PARI
    {a(n)=my(m=n\2,p=3*(n%2)+1);binomial(7*m+p-1,m)*p/(6*m+p)}

Formula

G.f.: A(x) = G(x^2) + x*G(x^2)^4 where G(x^2) = A(x)*A(-x) and G(x) = 1 + x*G(x)^7 is the g.f. of A002296.
a(2n) = binomial(7*n,n)/(6*n+1); a(2n+1) = binomial(7*n+3,n)*4/(6*n+4).
G.f. satisfies: A(x)*A(-x) = (A(x) + A(-x))/2.
a(0) = 1; a(n) = Sum_{i, j, k, l>=0 and i+2*j+2*k+2*l=n-1} a(i) * a(2*j) * a(2*k) * a(2*l). - Seiichi Manyama, Jul 07 2025
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_7>=0 and x_1+x_2+...+x_7=n-1} (-1)^(x_1+x_2+x_3) * Product_{k=1..7} a(x_k). - Seiichi Manyama, Jul 08 2025

Extensions

a(26) onwards from Andrew Howroyd, Feb 08 2024

A143550 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4*A(-x)^2.

Original entry on oeis.org

1, 1, 2, 11, 38, 257, 1040, 7646, 33374, 256718, 1171454, 9270560, 43558064, 351490167, 1686018600, 13799914556, 67223728270, 556203232266, 2741975026412, 22880729474777, 113875773363274, 956800135969601
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2008

Keywords

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 11*x^3 + 38*x^4 + 257*x^5 + 1040*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 72*x^3 + 333*x^4 + 1936*x^5 + 9966*x^6 +...
A(-x)^2 = 1 - 2*x + 5*x^2 - 26*x^3 + 102*x^4 - 634*x^5 + 2867*x^6 -+...
A(x)^2*A(-x) = 1 + x + 5*x^2 + 14*x^3 + 102*x^4 + 348*x^5 + 2867*x^6 +...
A(x)*A(-x) = 1 + 3*x^2 + 58*x^4 + 1597*x^6 + 51406*x^8 + 1807747*x^10 +...
[A(x)*A(-x)]^6 = 1 + 18*x^2 + 483*x^4 + 15342*x^6 + 535161*x^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,2*n,A=1+x*A^4*subst(A^2,x,-x));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) + A(-x) = 1 + [A(x)*A(-x)] + x^2*[A(x)*A(-x)]^6.
G.f. satisfies: 1 - 4*y + 6*y^2 - 4*y^3 + y^4 - 2*x*y^6 + 4*x*y^7 - x*y^8 - x*y^9 + x^2*y^12 = 0, where y=A(x). - Vaclav Kotesovec, Mar 25 2014
a(n) ~ c / (sqrt(Pi)*n^(3/2)*r^n), where r = sqrt(22444621 + 5142958*sqrt(19))/46656 = 0.143559867369277217..., c = sqrt((13 - 49/sqrt(19))/3)/3 = 0.255214437... if n is even, and c = sqrt((73 - 1/sqrt(19))/3)/15 = 0.328341701... if n is odd. - Vaclav Kotesovec, Mar 25 2014
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_6>=0 and x_1+x_2+...+x_6=n-1} (-1)^(x_1+x_2) * Product_{k=1..6} a(x_k). - Seiichi Manyama, Jul 08 2025

A143338 G.f. A(x) satisfies A(x) = 1 + x*A(x)^3*A(-x).

Original entry on oeis.org

1, 1, 2, 8, 26, 127, 478, 2536, 10250, 56900, 239880, 1370272, 5940054, 34607146, 153018932, 904441648, 4058644842, 24254529036, 110096276440, 663665021280, 3040205250984, 18455364854839, 85176971647470, 520059936017128
Offset: 0

Views

Author

Paul D. Hanna, Aug 09 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 26*x^4 + 127*x^5 + 478*x^6 +...
Compare bisections of A(x)^2, A(x)^2*A(-x), and A(x)^4*A(-x)^2:
A(x)^2 = 1 + 2*x + 5*x^2 + 20*x^3 + 72*x^4 + 338*x^5 + 1378*x^6 + 6952*x^7 +...
A(x)^2*A(-x) = 1 + x + 5*x^2 + 11*x^3 + 72*x^4 + 191*x^5 + 1378*x^6 + 3979*x^7 +...
A(x)^4*A(-x)^2 = 1 + 2*x + 11*x^2 + 32*x^3 + 191*x^4 + 636*x^5 + 3979*x^6 +...
Related expansions:
A(x)^3 = 1 + 3*x + 9*x^2 + 37*x^3 + 144*x^4 + 669*x^5 + 2882*x^6 + 14229*x^7 +...
A(x)^3*A(-x) = 1 + 2*x + 8*x^2 + 26*x^3 + 127*x^4 + 478*x^5 + 2536*x^6 +...
A(x)^3*A(-x)^2 = 1 + x + 8*x^2 + 14*x^3 + 127*x^4 + 264*x^5 + 2536*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+O(x^21));for(i=0,n,A=1+x*A^3*subst(A,x,-x));polcoeff(A,n)}

Formula

a(0) = 1; a(n) = Sum_{i, j, k, l>=0 and i+j+k+l=n-1} (-1)^i * a(i) * a(j) * a(k) * a(l). - Seiichi Manyama, Jul 08 2025
Showing 1-3 of 3 results.