cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A143609 Numerators of the upper principal and intermediate convergents to 2^(1/2).

Original entry on oeis.org

2, 3, 10, 17, 58, 99, 338, 577, 1970, 3363, 11482, 19601, 66922, 114243, 390050, 665857, 2273378, 3880899, 13250218, 22619537, 77227930, 131836323, 450117362, 768398401, 2623476242, 4478554083, 15290740090, 26102926097, 89120964298, 152139002499
Offset: 1

Views

Author

Clark Kimberling, Aug 27 2008

Keywords

Comments

The upper principal and intermediate convergents to 2^(1/2), beginning with
2/1, 3/2, 10/7, 17/12, 58/41, form a strictly decreasing sequence;
essentially, numerators=A143609 and denominators=A084068.

Examples

			2*x + 3*x^2 + 10*x^3 + 17*x^4 + 58*x^5 + 99*x^6 + 338*x^7 + 577*x^8 + ...
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (2 + 3 x - 2 x^2 - x^3)/(1 - 6 x^2 + x^4), {x, 0, 30}], x] (* Michael De Vlieger, Mar 27 2016 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * (2 + 3*x - 2*x^2 - x^3) / (1 - 6*x^2 + x^4) + x * O(x^n), n))} /* Michael Somos, Sep 03 2013 */
    
  • PARI
    x='x+O('x^99); Vec(x*(2+3*x-2*x^2-x^3)/(1-6*x^2+x^4)) \\ Altug Alkan, Mar 27 2016

Formula

a(n) = 6 * a(n-2) - a(n-4). a(2*n) = A001541(n) if n>0. a(2*n + 1) = 2 * A001653(n + 1).- Michael Somos, Sep 03 2013
G.f.: x * (2 + 3*x - 2*x^2 - x^3) / (1 - 6*x^2 + x^4). - Michael Somos, Sep 03 2013
a(n) = (2+sqrt(2)+(-1)^n*(-2+sqrt(2)))*((-1+sqrt(2))^n+(1+sqrt(2))^n)/(4*sqrt(2)). - Colin Barker, Mar 27 2016

A182439 Table a(k,i), read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array - see below).

Original entry on oeis.org

0, 0, 4, 14, 1, 7, 110, 14, 2, 8, 672, 95, 14, 3, 10, 3948, 568, 84, 14, 4, 11, 23042, 3325, 492, 81, 14, 5, 12, 134330, 19394, 2870, 472, 74, 14, 6, 13, 782964, 113051, 16730, 2751, 424, 71, 14, 7, 14, 4563480, 658924, 97512, 16034, 2464, 404, 68, 14, 8, 15
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 28 2012

Keywords

Comments

This is a square array related to the square array of nonnegative integers, A001477. Each row k contains the positive argument of the largest triangular number equal to or less than 14*k in column 0 and a corresponding 2nd-order recursive sequence G(k) in the rest of the row. Each second-order recursive series term G(i) corresponds to a(k,i+1). If the product 14*k appears in row "r" of the square array A001477, then the product of adjacent terms G(i)*G(i+1), if greater than (r^2 + 3*r - 2)/2, is always in row "r" of square array A001477. If the product is less than (r^2 + 3*r -2)/2 then assuming the row can take negative indices, the product can still be said to lie in the same row r. For instance, 0, 1, 3, and 6 are each a triangular number and appear as the first 4 terms of row 0 of square array A001477. Note that in the next row and to the left of the 1, 3, and 6 are 2, 4 and 7 so going down a row and to the left in the square array increases the value by 1. Going down to the next row and to the left again would be 3, 5, and 8 so 3 which is 2 more than 1 would be in row 2 if that row were made to take the indices (2,-1).
A property of this table is that a(k+1,i)-a(k,i) directly depends on the value of a(k+1,0)-a(k,0) in the same manner regardless of the value of k. For example, a(k,2+n) - a(k,2+n) = A001652(n) for n=0,1,2,3,... whereever a(k+1,0) - a(k,0) = 1.
Also, a(k+1,2+n) - a(k,2+n) is divisible by A143608(n) for n>0 for all k.

Examples

			     0,     0,    14,   110,   672,  3948, 23042,134330,782964,
     4,     1,    14,    95,   568,  3325, 19394,113051,658924,
     7,     2,    14,    84,   492,  2870, 16730, 97512,568344,
     8,     3,    14,    81,   472,  2751, 16034, 93453,544684,
    10,     4,    14,    74,   424,  2464, 14354, 83654,487564,
    11,     5,    14,    71,   404,  2345, 13658, 79595,463904,
    12,     6,    14,    68,   384,  2226, 12962, 75536,440244.
Note that 0*14, 14*110, 110*672, etc. are all triangular numbers and thus appear in row 0 of square array A001477; while, 1*14, 14*95, 95*568, 568*3325, etc. are all 4 more than a triangular number and appear in row 4 of square array A001477.
		

Crossrefs

Programs

  • Maple
    A182439 := proc(n,k)
            if k = 0 then
                    A003056(14*n) ;
            elif k = 1 then
                    n;
            elif k = 2 then
                    14;
            else
                    6*procname(n,k-1)-procname(n,k-2)+ 28+2*n-2-4*procname(n,0) ;
            end if;
    end proc: # R. J. Mathar, Jul 09 2012
  • Mathematica
    highTri = Compile[{{S1,_Integer}}, Module[{xS0=0, xS1=S1}, While[xS1-xS0*(xS0+1)/2 > xS0, xS0++]; xS0]];
    overTri = Compile[{{S2,_Integer}}, Module[{xS0=0, xS2=S2}, While[xS2-xS0*(xS0+1)/2 > xS0, xS0++]; xS2 - (xS0*(1+xS0)/2)]];
    K1 = 0; m = 14; tab=Reap[While[K1<16,J1=highTri[m*K1]; X = 2*(m+K1-(J1*2+1)); K2 = (6 m - K1 + X); K3 = 6 K2 - m + X;
    K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X; K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c]; Sow[K1,d]; Sow[m,e];
    Sow[K2,f]; Sow[K3,g]; Sow[K4,h];
      Sow[K5,i]; Sow[K6,j]; Sow[K7,k]; Sow[K8,l]; K1++]][[2]]; a=1; list5 = Reap[While[a<11, b=a; While[b>0,
    Sow[tab[[b,a+1-b]]]; b--]; a++]][[2,1]]; list5
    (* Second program: *)
    A003056[n_] := Floor[(Sqrt[1 + 8n] - 1)/2];
    T[n_, k_] := Switch[k, 0, A003056[14n], 1, n, 2, 14, _, 6T[n, k-1] - T[n, k-2] + 28 + 2n - 2 - 4T[n, 0]];
    Table[T[n-k, k], {n, 0, 9}, {k, n, 0, -1}] (* Jean-François Alcover, May 09 2023, after R. J. Mathar *)

Formula

a(k,0) equals the largest m such that m*(m+1)/2 is equal to or less than 14*k, A003056(14*k).
a(k,1) = k; a(k,2) = 14.
For i > 2, a(k,i) = 6*a(k,i-1) -a (k,i-2) + G_k where G_k = 28 + 2*k - 2 - 4*a(k,0).
a(k,i) = 7*a(k,i-1)-7*a(k,i-2)+a(k,i-3). - R. J. Mathar, Jul 09 2012

A182441 Table, read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array - see below).

Original entry on oeis.org

0, 0, 4, 14, 1, 7, 114, 14, 2, 8, 700, 131, 14, 3, 10, 4116, 820, 144, 14, 4, 11, 24026, 4837, 912, 149, 14, 5, 12, 140070, 28250, 5390, 948, 158, 14, 6, 13, 816424, 164711, 31490, 5607, 1012, 163, 14, 7, 14, 4758504
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 28 2012

Keywords

Comments

This is a table related to the square array of the nonnegative integers (A001477). Each row k contains A003056(14*k) in column 0 and a corresponding 2nd order recursive sequence G(k) beginning at position a(k,1). That is each term G(i) is a(k,i+1). If A002262(14*n) is "r", the product of adjacent terms G(i)*G(i+1) if greater than (r^2 + 3*r - 2)/2, is always in row "r" of the square array A001477. If the product is less than (r^2 + 3*r -2)/2, then the product could still be said to lie in the same row r since the product is equal to the sum of a triangular number + r, which is a property of all numbers in row r of the square array A002262.
A property of this table is that a(k+1,i)-a(k,i) directly depends on the value of a(k+1,0)-a(k,0) in the same manner regardless of the value of k. For instance, wherever a(k+1,0)-a(k,0) = 0, a(k+1,i+1)-a(k,i+1) = A212329. Also, a(k+1,n+2)-a(k,n+2) is divisible by A143608(n).

Examples

			For i>0 a(0,i) * a(0,i+1) = 0*14,14*114,114*700,700*4116,etc. which are all triangular numbers and lie in row 0 of square array A001477, while a(1,i)*a(1.i+1) = 1*14, 14*131, 131*820, 820*4837 etc. which are all 4 more than a triangular number and lie in row 4 of square array A001477.
		

Crossrefs

Programs

  • Mathematica
    highTri = Compile[{{S1,_Integer}}, Module[{xS0=0, xS1=S1}, While[xS1-xS0*(xS0+1)/2 > xS0, xS0++]; xS0]];
    overTri = Compile[{{S2,_Integer}}, Module[{xS0=0, xS2=S2}, While[xS2-xS0*(xS0+1)/2 > xS0, xS0++]; xS2 - (xS0*(1+xS0)/2)]];
    K1 = 0; m = 14; tab=Reap[While[K1<16,J1=highTri[m*K1]; X = 2*(m+K1+(J1*2+1)); K2 = (6 m - K1 + X); K3 = 6 K2 - m + X;
    K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X; K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c]; Sow[K1,d]; Sow[m,e];
    Sow[K2,f]; Sow[K3,g]; Sow[K4,h];
      Sow[K5,i]; Sow[K6,j]; Sow[K7,k]; Sow[K8,l]; K1++]][[2]]; a=1; list5 = Reap[While[a<11, b=a; While[b>0,
    Sow[tab[[b,a+1-b]]]; b--]; a++]][[2,1]]; list5

Formula

a(k,0) equals the largest m such that m*(m+1)/2 <= 14*k (A003056(14*k)).
a(k,1) equals k; a(k,2) = 14.
For i > 2, a(k,i) = 6*a(k,i-1) -a (k,i-2) + G_k where G_k is a constant equal to 28 + 2*k + 2 + 4*A003056(14*k).

A182435 a(n) = 6*a(n-1) - a(n-2) - 2 with n>1, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 4, 21, 120, 697, 4060, 23661, 137904, 803761, 4684660, 27304197, 159140520, 927538921, 5406093004, 31509019101, 183648021600, 1070379110497, 6238626641380, 36361380737781, 211929657785304, 1235216565974041, 7199369738058940, 41961001862379597
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 28 2012

Keywords

Comments

It appears that for n>0, A143608(n) divides a(n).
The sequence a(n)/A143608(n) appears to generate A001541 interleaved with A001653. - R. J. Mathar, Jul 04 2012
It also appears that if p equals a prime of the form 8*r +/- 3 then a(p + 1) == 0 (mod p); and that if p is a prime in the form of 8*r +/- 1 then a(p - 1) == 0 (mod p), inherited from A143608.

Crossrefs

Cf. A001108, A143608, A001541 (first differences).
Essentially a duplicate of A046090.

Programs

  • Magma
    [n le 2 select n-1 else 6*Self(n-1)-Self(n-2)-2: n in [1..24]]; // Bruno Berselli, May 15 2012
    
  • Mathematica
    m = -20;
    n = -3;
    c = 0;
    list3 = Reap[While[c < 20,t = 6 n - m - 2;Sow[t];m = n;n = t; c++]][[2,1]]
    LinearRecurrence[{7,-7,1},{0,1,4},30] (* Harvey P. Dale, May 11 2018 *)
  • PARI
    concat(0,Vec((1-3*x)/(1-x)/(1-6*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Jun 11 2013

Formula

a(n) = A046090(n-1), for n>=1.
G.f.: x*(1-3*x)/((1-x)*(1-6*x+x^2)). - Bruno Berselli, May 15 2012
a(n) = A001652(n-1)+1 with A001652(-1)=-1. - Bruno Berselli, May 16 2012
2*a(n)*(a(n)-1)+1 = A001653(n)^2 for n>0. - Bruno Berselli, Oct 23 2012

A182440 Table, read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array).

Original entry on oeis.org

0, 14, 4, 0, 14, 7, 16, 1, 14, 8, 126, 40, 2, 14, 10, 770, 287, 60, 3, 14, 11, 4524, 1730, 420, 72, 4, 14, 12, 26404, 10141, 2522, 497, 88, 5, 14, 13, 153930, 59164, 14774, 2978, 602, 100, 6, 14, 14, 897206
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 28 2012

Keywords

Comments

This is a table related to A001477 interpreted as a square array of the onnegative integers (A001477). Each row k contains A003056(14*k) in column 0 and a corresponding 2nd order recursive sequence G(k) beginning at position a(k,1) such that G(i) = a(k,i+1). If the product 14*k appears in row "r" of the square array A001477, then the product of adjacent terms G(i)*G(i+1) if greater than (r^2 + 3*r - 2)/2, is always in row "r" of square array A001477.
A property of this table is that a(k+1,i)-a(k,i) directly depends on the value of a(k+1,0)-a(k,0) in the same manner regardless of the value of k. For instance, a(k+1,i+1)-a(k,i+1 = A210695(i) if a(k + 1,0) - a(k,0) = 1; while a(k+1,i+1)-a(k,i+1 = A001108(i) if a(k+1,0) - a(k,0) = 0.
A related property is that a(k+1,1+n) - a(k,1+n) is divisible by A143608(n) for all k.

Examples

			For i = 1,2,3,4 ..., a(1,i)*a(1,i+1) = 14*1,1*40,40*287,287*1730, ...; and, each product is 4 more than a triangular number and thus lies in row 4 of square array A001477.
		

Crossrefs

Programs

  • Mathematica
    highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
    While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
    xS0]];
    overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
    While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
    xS2 - (xS0*(1+xS0)/2)]];
    K1 = 0;
    m = 14;table=Reap[While[K1<16,J1=highTri[m*K1];X = 2*(m+K1+(J1*2+1));K2 = (6 K1 - m + X);K3 = 6 K2 - K1 + X;
    K4 =  6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X;K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c];Sow[m,d];
    Sow[K1,e];Sow[K2,f];Sow[K3,g];Sow[K4,h];
      Sow[K5,i]; Sow[K6,j];Sow[K7,k];Sow[K8,l];
    K1++]][[2]];
    a=1;
    list5 = Reap[While[a<11,b=a;
    While[b>0,Sow[table[[b,a+1-b]]];b--];a++]][[2,1]];
    list5

Formula

a(k,0) equals the positive argument of the largest triangular number equal to or less than 14*k (= A214206(k) which = A003056(14*k)).
a(k,1) equals 14; a(k,2) = k.
For i > 2, a(k,i) = 6*a(k,i-1) -a (k,i-2) + G_k where G_k is a constant equal to 28 + 2*k + 2 + 4*A214206(k).

A227972 Two column recursive array A(n,k), relating expressions based on half-squares (A007590) to each other and several other sequences, read by rows.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 4, 5, 7, 7, 10, 17, 24, 29, 41, 41, 58, 99, 140, 169, 239, 239, 338, 577, 816, 985, 1393, 1393, 1970, 3363, 4756, 5741, 8119, 8119, 11482, 19601, 27720, 33461, 47321, 47321, 66922, 114243, 161564, 195025, 275807, 275807, 390050, 665857, 941664, 1136689, 1607521
Offset: 1

Views

Author

Richard R. Forberg, Aug 01 2013

Keywords

Comments

The first column (k=1) holds the interleaved integer square roots of these two "Half-Square" expressions in ascending order: floor(m^2/2 + 1) for m=>0 and floor(m^2/2 - 1) for m=>1. The second column (k=2) holds the value of m that yields the corresponding integer square root.
The value of m for row n (at n mod 3 = 2) is the value of the square root for the next row (at n mod 3 = 0) which uses the other expression.
There are twice as many results for the expression floor(m^2/2 + 1) as for floor(m^2/2 - 1), interleaved consistently as two of every three results (as shown in the example below).
The first column, for n mod 3 = 1, produces A001541.
The first column, for n mod 3 = 2, produces A001653.
NOTE: Interleaving of the two sequences above is A079496.
The first column, for n mod 3 = 0, produces A002315 (NSW Numbers).
NOTE: Interleaving of A001541 and A002315 is A001333.
The second column, for n mod 3 = 1, produces A005319.
The second column, for n mod 3 = 2, produces A002315 (again).
NOTE: Interleaving of the two sequences above is A143608.
The second column, for n mod 3 = 0, produces A075870.
NOTE: Interleaving of A005319 and A075870 is A052542 = 2*A000129 (Pell)
The row sums at n mod 3 = 1 and n mod 3 = 0 are used in the recursion to produce values in subsequent rows of the array for both columns.
For rows at n mod 3 = 2, the ascending interleaved combination of A(n,1) and the row sum (of the same row) produces A000129 (Pell Numbers).
Row sums also hold all the integer square roots (as given in A001542) of the Half-Squares, (A007590), at n mod 3 = 2, and the corresponding values of m in the next row at n mod 3 = 0, corresponding to A001541.
The value of the floor of half the row sum, for n mod 3 =0 and n mod 3 = 1, produces A048739, giving the partial sums of A000129 (Pell Numbers), for the Pell Numbers produced through the prior row at n mod 3 = 2.
The value of half the row sum, for n mod 3 = 2, produces A001109 (without its initial 0). This subsequence is also produced from finding the integer square roots of A083374. The value of the indices of that sequence where these roots occur is given by A002315 (NSW Numbers).
The differences of two entries in row n equals the row sum for row n-3, consistently for all rows n > 3.
The ratio of the two entries in the same row converges to sqrt(2).
The ratio of two entries in the same column (either k=1 or k=2) converge as follows:
A(k,n)/A(k,n-1)--> sqrt(2) for n mod 3 = 0,
--> sqrt(2) + 1 for n mod 3 = 1,
--> sqrt(2)/2 + 1 for n mod 3 = 2.
A(k,n)/A(k,n-3)--> sqrt(8) + 3 for n mod 3 = 0, 1, or 2,
That last line means: A001541, A001653, A002315, A005319 and A075870 all have the convergence ratio of sqrt(8) + 3 for adjacent terms. In addition alternating Pell Numbers also converge to that ratio.

Examples

			The two column array with row number n and the row sum. An extra column on the right shows which expression is applicable to get that row's values: either floor(m^2/2 + 1) indicated as "+1",  or floor(m^2/2 - 1) indicated as "-1". (NOTE: The value of n is immaterial, except as a row number).
The array begins:
Row         k=1         k=2                   Applicable "Half-Square"
n          (sqrt)       (m)         Row Sum        Expression
1            1           0               1             +1
2            1           1               2             +1
3            1           2               3             -1
4            3           4               7             +1
5            5           7              12             +1
6            7          10              17             -1
7           17          24              41             +1
8           29          41              70             +1
9           41          58              99             -1
10          99         140             239             +1
11         169         239             408             +1
12         239         338             577             -1
13         577         816            1393             +1
14         985        1393            2378             +1
15        1393        1970            3363             -1
16        3363        4756            8119             +1
17        5741        8119           13860             +1
18        8119       11482           19601             -1
19       19601       27720           47321             +1
20       33461       47321           80782             +1
		

Crossrefs

Formula

Initialize row 1 as A(1,1) = 1 and A(1,2) = 0, then:
For rows at n mod 3 = 0: A(n,1) = A(n-1, 2)
A(n,2) = A(n, 1) + A(n-2, 1)
For rows at n mod 3 = 1: A(n,1) = A(n-1, 1) + A(n-1, 2)
A(n,2) = A(n, 1) + A(n-1, 1)
For rows at n mod 3 = 2: A(n,1) = A(n-1,1) + A(n-3, 1)
A(n,2) = A(n-1,1) + A(n-1, 2)
Empirical g.f.: -x*(2*x^11-x^10-x^9+x^8-4*x^7+3*x^6-2*x^5-x^4-x^3-x^2-1) / ((x^6-2*x^3-1)*(x^6+2*x^3-1)). - Colin Barker, Aug 08 2013

Extensions

Some additional comments by Richard R. Forberg, Aug 12 2013
Previous Showing 11-16 of 16 results.