A143609
Numerators of the upper principal and intermediate convergents to 2^(1/2).
Original entry on oeis.org
2, 3, 10, 17, 58, 99, 338, 577, 1970, 3363, 11482, 19601, 66922, 114243, 390050, 665857, 2273378, 3880899, 13250218, 22619537, 77227930, 131836323, 450117362, 768398401, 2623476242, 4478554083, 15290740090, 26102926097, 89120964298, 152139002499
Offset: 1
2*x + 3*x^2 + 10*x^3 + 17*x^4 + 58*x^5 + 99*x^6 + 338*x^7 + 577*x^8 + ...
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Creighton Kenneth Dement, Comments on A143608 and A143609
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
-
Rest@ CoefficientList[Series[x (2 + 3 x - 2 x^2 - x^3)/(1 - 6 x^2 + x^4), {x, 0, 30}], x] (* Michael De Vlieger, Mar 27 2016 *)
-
{a(n) = if( n<1, 0, polcoeff( x * (2 + 3*x - 2*x^2 - x^3) / (1 - 6*x^2 + x^4) + x * O(x^n), n))} /* Michael Somos, Sep 03 2013 */
-
x='x+O('x^99); Vec(x*(2+3*x-2*x^2-x^3)/(1-6*x^2+x^4)) \\ Altug Alkan, Mar 27 2016
A182439
Table a(k,i), read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array - see below).
Original entry on oeis.org
0, 0, 4, 14, 1, 7, 110, 14, 2, 8, 672, 95, 14, 3, 10, 3948, 568, 84, 14, 4, 11, 23042, 3325, 492, 81, 14, 5, 12, 134330, 19394, 2870, 472, 74, 14, 6, 13, 782964, 113051, 16730, 2751, 424, 71, 14, 7, 14, 4563480, 658924, 97512, 16034, 2464, 404, 68, 14, 8, 15
Offset: 0
0, 0, 14, 110, 672, 3948, 23042,134330,782964,
4, 1, 14, 95, 568, 3325, 19394,113051,658924,
7, 2, 14, 84, 492, 2870, 16730, 97512,568344,
8, 3, 14, 81, 472, 2751, 16034, 93453,544684,
10, 4, 14, 74, 424, 2464, 14354, 83654,487564,
11, 5, 14, 71, 404, 2345, 13658, 79595,463904,
12, 6, 14, 68, 384, 2226, 12962, 75536,440244.
Note that 0*14, 14*110, 110*672, etc. are all triangular numbers and thus appear in row 0 of square array A001477; while, 1*14, 14*95, 95*568, 568*3325, etc. are all 4 more than a triangular number and appear in row 4 of square array A001477.
-
A182439 := proc(n,k)
if k = 0 then
A003056(14*n) ;
elif k = 1 then
n;
elif k = 2 then
14;
else
6*procname(n,k-1)-procname(n,k-2)+ 28+2*n-2-4*procname(n,0) ;
end if;
end proc: # R. J. Mathar, Jul 09 2012
-
highTri = Compile[{{S1,_Integer}}, Module[{xS0=0, xS1=S1}, While[xS1-xS0*(xS0+1)/2 > xS0, xS0++]; xS0]];
overTri = Compile[{{S2,_Integer}}, Module[{xS0=0, xS2=S2}, While[xS2-xS0*(xS0+1)/2 > xS0, xS0++]; xS2 - (xS0*(1+xS0)/2)]];
K1 = 0; m = 14; tab=Reap[While[K1<16,J1=highTri[m*K1]; X = 2*(m+K1-(J1*2+1)); K2 = (6 m - K1 + X); K3 = 6 K2 - m + X;
K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X; K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c]; Sow[K1,d]; Sow[m,e];
Sow[K2,f]; Sow[K3,g]; Sow[K4,h];
Sow[K5,i]; Sow[K6,j]; Sow[K7,k]; Sow[K8,l]; K1++]][[2]]; a=1; list5 = Reap[While[a<11, b=a; While[b>0,
Sow[tab[[b,a+1-b]]]; b--]; a++]][[2,1]]; list5
(* Second program: *)
A003056[n_] := Floor[(Sqrt[1 + 8n] - 1)/2];
T[n_, k_] := Switch[k, 0, A003056[14n], 1, n, 2, 14, _, 6T[n, k-1] - T[n, k-2] + 28 + 2n - 2 - 4T[n, 0]];
Table[T[n-k, k], {n, 0, 9}, {k, n, 0, -1}] (* Jean-François Alcover, May 09 2023, after R. J. Mathar *)
A182441
Table, read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array - see below).
Original entry on oeis.org
0, 0, 4, 14, 1, 7, 114, 14, 2, 8, 700, 131, 14, 3, 10, 4116, 820, 144, 14, 4, 11, 24026, 4837, 912, 149, 14, 5, 12, 140070, 28250, 5390, 948, 158, 14, 6, 13, 816424, 164711, 31490, 5607, 1012, 163, 14, 7, 14, 4758504
Offset: 0
For i>0 a(0,i) * a(0,i+1) = 0*14,14*114,114*700,700*4116,etc. which are all triangular numbers and lie in row 0 of square array A001477, while a(1,i)*a(1.i+1) = 1*14, 14*131, 131*820, 820*4837 etc. which are all 4 more than a triangular number and lie in row 4 of square array A001477.
-
highTri = Compile[{{S1,_Integer}}, Module[{xS0=0, xS1=S1}, While[xS1-xS0*(xS0+1)/2 > xS0, xS0++]; xS0]];
overTri = Compile[{{S2,_Integer}}, Module[{xS0=0, xS2=S2}, While[xS2-xS0*(xS0+1)/2 > xS0, xS0++]; xS2 - (xS0*(1+xS0)/2)]];
K1 = 0; m = 14; tab=Reap[While[K1<16,J1=highTri[m*K1]; X = 2*(m+K1+(J1*2+1)); K2 = (6 m - K1 + X); K3 = 6 K2 - m + X;
K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X; K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c]; Sow[K1,d]; Sow[m,e];
Sow[K2,f]; Sow[K3,g]; Sow[K4,h];
Sow[K5,i]; Sow[K6,j]; Sow[K7,k]; Sow[K8,l]; K1++]][[2]]; a=1; list5 = Reap[While[a<11, b=a; While[b>0,
Sow[tab[[b,a+1-b]]]; b--]; a++]][[2,1]]; list5
A182435
a(n) = 6*a(n-1) - a(n-2) - 2 with n>1, a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 4, 21, 120, 697, 4060, 23661, 137904, 803761, 4684660, 27304197, 159140520, 927538921, 5406093004, 31509019101, 183648021600, 1070379110497, 6238626641380, 36361380737781, 211929657785304, 1235216565974041, 7199369738058940, 41961001862379597
Offset: 0
Essentially a duplicate of
A046090.
-
[n le 2 select n-1 else 6*Self(n-1)-Self(n-2)-2: n in [1..24]]; // Bruno Berselli, May 15 2012
-
m = -20;
n = -3;
c = 0;
list3 = Reap[While[c < 20,t = 6 n - m - 2;Sow[t];m = n;n = t; c++]][[2,1]]
LinearRecurrence[{7,-7,1},{0,1,4},30] (* Harvey P. Dale, May 11 2018 *)
-
concat(0,Vec((1-3*x)/(1-x)/(1-6*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Jun 11 2013
A182440
Table, read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array).
Original entry on oeis.org
0, 14, 4, 0, 14, 7, 16, 1, 14, 8, 126, 40, 2, 14, 10, 770, 287, 60, 3, 14, 11, 4524, 1730, 420, 72, 4, 14, 12, 26404, 10141, 2522, 497, 88, 5, 14, 13, 153930, 59164, 14774, 2978, 602, 100, 6, 14, 14, 897206
Offset: 0
For i = 1,2,3,4 ..., a(1,i)*a(1,i+1) = 14*1,1*40,40*287,287*1730, ...; and, each product is 4 more than a triangular number and thus lies in row 4 of square array A001477.
-
highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
xS0]];
overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
xS2 - (xS0*(1+xS0)/2)]];
K1 = 0;
m = 14;table=Reap[While[K1<16,J1=highTri[m*K1];X = 2*(m+K1+(J1*2+1));K2 = (6 K1 - m + X);K3 = 6 K2 - K1 + X;
K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X;K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c];Sow[m,d];
Sow[K1,e];Sow[K2,f];Sow[K3,g];Sow[K4,h];
Sow[K5,i]; Sow[K6,j];Sow[K7,k];Sow[K8,l];
K1++]][[2]];
a=1;
list5 = Reap[While[a<11,b=a;
While[b>0,Sow[table[[b,a+1-b]]];b--];a++]][[2,1]];
list5
A227972
Two column recursive array A(n,k), relating expressions based on half-squares (A007590) to each other and several other sequences, read by rows.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 3, 4, 5, 7, 7, 10, 17, 24, 29, 41, 41, 58, 99, 140, 169, 239, 239, 338, 577, 816, 985, 1393, 1393, 1970, 3363, 4756, 5741, 8119, 8119, 11482, 19601, 27720, 33461, 47321, 47321, 66922, 114243, 161564, 195025, 275807, 275807, 390050, 665857, 941664, 1136689, 1607521
Offset: 1
The two column array with row number n and the row sum. An extra column on the right shows which expression is applicable to get that row's values: either floor(m^2/2 + 1) indicated as "+1", or floor(m^2/2 - 1) indicated as "-1". (NOTE: The value of n is immaterial, except as a row number).
The array begins:
Row k=1 k=2 Applicable "Half-Square"
n (sqrt) (m) Row Sum Expression
1 1 0 1 +1
2 1 1 2 +1
3 1 2 3 -1
4 3 4 7 +1
5 5 7 12 +1
6 7 10 17 -1
7 17 24 41 +1
8 29 41 70 +1
9 41 58 99 -1
10 99 140 239 +1
11 169 239 408 +1
12 239 338 577 -1
13 577 816 1393 +1
14 985 1393 2378 +1
15 1393 1970 3363 -1
16 3363 4756 8119 +1
17 5741 8119 13860 +1
18 8119 11482 19601 -1
19 19601 27720 47321 +1
20 33461 47321 80782 +1
Cf.
A007590,
A001541,
A001653,
A079496,
A002315,
A005319,
A143608,
A075870,
A000129,
A001109,
A083374.
Comments