cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A143937 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in a benzenoid consisting of a linear chain of n hexagons (1 <= k <= 2n+1).

Original entry on oeis.org

6, 6, 3, 11, 14, 12, 6, 2, 16, 22, 21, 14, 10, 6, 2, 21, 30, 30, 22, 18, 14, 10, 6, 2, 26, 38, 39, 30, 26, 22, 18, 14, 10, 6, 2, 31, 46, 48, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2, 36, 54, 57, 46, 42, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2, 41, 62, 66, 54, 50, 46, 42, 38, 34, 30, 26, 22
Offset: 1

Views

Author

Emeric Deutsch, Sep 06 2008

Keywords

Comments

The entries in row n are the coefficients of the Wiener polynomial of the benzenoid consisting of a linear chain of n hexagons.
Sum of entries in row n is (2*n+1)*(4*n+1) = A014634(n).
Sum_{k=1..2n+1} k*T(n,k) = A143938(n) is the Wiener index of a benzenoid consisting of a linear chain of n hexagons.

Examples

			T(1,2)=6 because in a hexagon there are 6 distances equal to 2.
Triangle starts:
   6,  6,  3;
  11, 14, 12,  6,  2;
  16, 22, 21, 14, 10,  6,  2;
  21, 30, 30, 22, 18, 14, 10,  6,  2;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if 2*n+1 < k then 0 elif k = 1 then 5*n+1 elif k = 3 then 9*n-6 elif `mod`(k, 2) = 0 then 8*n-4*k+6 else 8*n-4*k+6 end if end proc: for n to 8 do seq(T(n,k),k=1..2*n+1) end do; # yields sequence in triangular form

Formula

For 1 <= k <= 2n+1, T(n,k) is given by T(n,1) = 5*n+1, T(n,3) = 9*n - 6, T(n,2*p+1) = 8*n-8*p+2, T(n,2*p) = 8*n-8*p+6.
G.f.: q*z*(6+6*q-z+2*q*z+3*q^2+q^2*z^2-q^4*z)/((1-q^2*z)*(1-z)^2).

A193391 Wiener index of a benzenoid consisting of a spiral chain of n hexagons (s=1; see the Gutman et al. reference).

Original entry on oeis.org

27, 109, 271, 529, 899, 1397, 2039, 2841, 3819, 4989, 6367, 7969, 9811, 11909, 14279, 16937, 19899, 23181, 26799, 30769, 35107, 39829, 44951, 50489, 56459, 62877, 69759, 77121, 84979, 93349, 102247, 111689, 121691, 132269, 143439, 155217, 167619, 180661
Offset: 1

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

Formula

a(n) = (27 - 26*n + 72*n^2 + 8*n^3)/3.
G.f.: x*(27 + x - 3*x^2 - 9*x^3)/(1-x)^4. - Bruno Berselli, Jul 27 2011

A193392 Hyper-Wiener index of a benzenoid consisting of a spiral chain of n hexagons (s=1; see the Gutman et al. reference).

Original entry on oeis.org

42, 215, 636, 1401, 2622, 4427, 6960, 10381, 14866, 20607, 27812, 36705, 47526, 60531, 75992, 94197, 115450, 140071, 168396, 200777, 237582, 279195, 326016, 378461, 436962, 501967, 573940, 653361, 740726, 836547, 941352, 1055685, 1180106, 1315191, 1461532
Offset: 1

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [(2*n^4 + 28*n^3 + 154*n^2 - 169*n + 111)/3: n in [1..40]]; // Vincenzo Librandi, Jul 26 2011
    
  • Maple
    a := proc (n) options operator, arrow; (2/3)*n^4+(28/3)*n^3+(154/3)*n^2-(169/3)*n+37 end proc: seq(a(n), n = 1 .. 35);
  • PARI
    a(n)=(2*n^4+28*n^3+154*n^2-169*n)/3+37 \\ Charles R Greathouse IV, Jul 26 2011

Formula

a(n) = (2*n^4 + 28*n^3 + 154*n^2 - 169*n + 111)/3.
G.f.: x*(42 + 5*x - 19*x^2 - 49*x^3 + 37*x^4)/(1-x)^5. - Bruno Berselli, Jul 27 2011

A193393 Wiener index of a benzenoid consisting of a zig-zag chain of n hexagons (s=13; see the Gutman et al. reference).

Original entry on oeis.org

27, 109, 271, 545, 963, 1557, 2359, 3401, 4715, 6333, 8287, 10609, 13331, 16485, 20103, 24217, 28859, 34061, 39855, 46273, 53347, 61109, 69591, 78825, 88843, 99677, 111359, 123921, 137395, 151813, 167207, 183609, 201051, 219565, 239183, 259937, 281859, 304981, 329335, 354953
Offset: 1

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

Formula

a(n) = (16*n^3 + 24*n^2 + 62*n - 21)/3.
G.f.: x*(27 + x - 3*x^2 + 7*x^3)/(1-x)^4. - Bruno Berselli, Jul 27 2011

A193394 Hyper-Wiener index of a benzenoid consisting of a zig-zag chain of n hexagons (s=13; see the Gutman et al. reference).

Original entry on oeis.org

42, 215, 636, 1513, 3118, 5787, 9920, 15981, 24498, 36063, 51332, 71025, 95926, 126883, 164808, 210677, 265530, 330471, 406668, 495353, 597822, 715435, 849616, 1001853, 1173698, 1366767, 1582740, 1823361, 2090438, 2385843, 2711512, 3069445, 3461706, 3890423, 4357788
Offset: 1

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [(8*n^4 + 24*n^3 + 28*n^2 + 147*n - 81)/3: n in [1..40]]; // Vincenzo Librandi, Jul 26 2011
    
  • Maple
    a := n-> (8/3)*n^4+8*n^3+(28/3)*n^2+49*n-27: seq(a(n), n = 1 .. 35);
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{42,215,636,1513,3118},40] (* Harvey P. Dale, Dec 10 2021 *)
  • PARI
    a(n)=(8*n^2+24*n+28)*n^2/3+49*n-27 \\ Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = (8*n^4 + 24*n^3 + 28*n^2 + 147*n - 81)/3.
G.f.: x*(42 + 5*x - 19*x^2 + 63*x^3 - 27*x^4)/(1-x)^5. - Bruno Berselli, Jul 27 2011

A193395 Wiener index of a benzenoid consisting of a double-step zig-zag chain of n hexagons (n >= 2, s = 2123; see the Gutman et al. reference).

Original entry on oeis.org

109, 271, 553, 971, 1573, 2375, 3425, 4739, 6365, 8319, 10649, 13371, 16533, 20151, 24273, 28915, 34125, 39919, 46345, 53419, 61189, 69671, 78913, 88931, 99773, 111455, 124025, 137499, 151925, 167319, 183729, 201171, 219693, 239311, 260073, 281995, 305125, 329479, 355105
Offset: 2

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [(16*n^3 + 24*n^2 + 74*n +6*(-1)^n - 51)/3: n in [2..40]]; // Vincenzo Librandi, Jul 26 2011
    
  • Maple
    a := proc (n) options operator, arrow; (16/3)*n^3+8*n^2+(74/3)*n+2*(-1)^n-17 end proc: seq(a(n), n = 2 .. 40);
  • Mathematica
    Table[(16n^3+24n^2+74n+6(-1)^n-51)/3,{n,2,40}] (* or *) LinearRecurrence[ {3,-2,-2,3,-1},{109,271,553,971,1573},40] (* Harvey P. Dale, Apr 08 2020 *)
  • PARI
    a(n)=(16*n^3+24*n^2+74*n+6*(-1)^n)/3-17 \\ Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = (16*n^3 + 24*n^2 + 74*n +6*(-1)^n - 51)/3.
G.f.: x^2*(109 - 56*x - 42*x^2 + 72*x^3 - 19*x^4)/((1+x)*(1-x)^4). - Bruno Berselli, Jul 27 2011

A193396 Hyper-Wiener index of a benzenoid consisting of a double-step zig-zag chain of n hexagons (n >= 2, s = 2123; see the Gutman et al. reference).

Original entry on oeis.org

215, 636, 1557, 3162, 5875, 10008, 16113, 24630, 36239, 51508, 71245, 96146, 127147, 165072, 210985, 265838, 330823, 407020, 495749, 598218, 715875, 850056, 1002337, 1174182, 1367295, 1583268, 1823933, 2091010, 2386459, 2712128, 3070105, 3462366, 3891127, 4358492
Offset: 2

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [(8*n^4 + 24*n^3 + 28*n^2 + 213*n + 33*(-1)^n - 246)/3: n in [2..40]]; // Vincenzo Librandi, Jul 26 2011
    
  • Maple
    a := proc (n) options operator, arrow: (8/3)*n^4+8*n^3+(28/3)*n^2+71*n+11*(-1)^n-82 end proc: seq(a(n), n = 2 .. 35);
  • PARI
    a(n)=(8*n^4+24*n^3+28*n^2+213*n+33*(-1)^n-246)/3 \\ Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = (8*n^4 + 24*n^3 + 28*n^2 + 213*n + 33*(-1)^n - 246)/3.
G.f.: x^2*(215 - 224*x + 88*x^2 + 114*x^3 - 63*x^4 - 2*x^5)/((1+x)*(1-x)^5). - Bruno Berselli, Jul 27 2011

A193397 Wiener index of a benzenoid consisting of a double-step spiral chain of n hexagons (n>=2, s=21; see the Gutman et al. reference).

Original entry on oeis.org

109, 271, 553, 955, 1541, 2279, 3265, 4435, 5917, 7615, 9689, 12011, 14773, 17815, 21361, 25219, 29645, 34415, 39817, 45595, 52069, 58951, 66593, 74675, 83581, 92959, 103225, 113995, 125717, 137975, 151249, 165091, 180013, 195535, 212201, 229499, 248005, 267175, 287617
Offset: 2

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [4*n^3 + 20*n^2 - 12*n + 2*(-1)^n*(n-2) + 21: n in [2..40]]; // Vincenzo Librandi, Jul 26 2011
  • Maple
    a := proc (n) options operator, arrow: 4*n^3+20*n^2-12*n+2*(-1)^n*(n-2)+21 end proc: seq(a(n), n = 2 .. 40);
  • Mathematica
    Table[4n^3+20n^2-12n+2(-1)^n(n-2)+21,{n,2,40}] (* or *) LinearRecurrence[ {2,1,-4,1,2,-1},{109,271,553,955,1541,2279},39] (* Harvey P. Dale, Aug 26 2011 *)

Formula

a(n) = 4*n^3 + 20*n^2 - 12*n + 2*(-1)^n*(n-2) + 21.
G.f.: x^2*(109+53*x-98*x^2+14*x^3+53*x^4-35*x^5)/((1+x)^2*(1-x)^4). - Bruno Berselli, Jul 27 2011
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6), with a(2)=109, a(3)=271, a(4)=553, a(5)=955, a(6)=1541, a(7)=2279. - Harvey P. Dale, Aug 26 2011

A193398 Hyper-Wiener index of a benzenoid consisting of a double-step spiral chain of n hexagons (n >= 2, s = 21; see the Gutman et al. reference).

Original entry on oeis.org

215, 636, 1557, 3018, 5555, 8968, 14225, 20790, 30159, 41364, 56525, 74146, 97067, 123168, 156105, 193038, 238535, 288940, 349829, 416634, 496035, 582456, 683777, 793318, 920255, 1056708, 1213245, 1380690, 1571099, 1773904, 2002745, 2245566, 2517687, 2805468
Offset: 2

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [(3/2)*n^4+12*n^3+(3/2)*n^2*(-1)^n+(73/2)*n^2+6*n*(-1)^n-79*n+(83/4)*(-1)^(n+1)+439/4: n in [2..40]]; // Vincenzo Librandi, Jul 26 2011
    
  • Maple
    a := n -> (3/2)*n^4+12*n^3+(3/2)*n^2*(-1)^n+(73/2)*n^2+6*n*(-1)^n-79*n+(83/4)*(-1)^(n+1)+439/4: seq(a(n), n = 2 .. 35);
  • Mathematica
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{215,636,1557,3018,5555,8968,14225,20790},40] (* Harvey P. Dale, Aug 30 2017 *)
  • PARI
    a(n)=(6*n^4+48*n^3+146*n^2-316*n+439+(-1)^n*(6*n^2+24*n-83))/4 \\ Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = (6*n^4 + 48*n^3 + 146*n^2 - 316*n + 439 + (-1)^n*(6*n^2 + 24*n - 83))/4.
G.f.: x^2*(215 + 206*x - 145*x^2 - 78*x^3 + 221*x^4 - 126*x^5 - 99*x^6 + 94*x^7)/((1+x)^3*(1-x)^5). - Bruno Berselli, Jul 26 2011

A193399 Wiener index of a benzenoid consisting of a chain of n hexagons characterized by the encoding s = 1133 (see the Gutman et al. reference, Sec. 5).

Original entry on oeis.org

27, 109, 271, 545, 931, 1493, 2199, 3145, 4267, 5693, 7327, 9329, 11571, 14245, 17191, 20633, 24379, 28685, 33327, 38593, 44227, 50549, 57271, 64745, 72651, 81373, 90559, 100625, 111187, 122693, 134727
Offset: 1

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [4*n^3 + 16*n^2 + 8*n + 2*(-1)^n*(n - 2) - 3: n in [1..40]]; // Vincenzo Librandi, Jul 26 2011
    
  • Maple
    a := proc (n) options operator, arrow: 4*n^3+16*n^2+8*n+2*(-1)^n*(n-2)-3 end proc: seq(a(n), n = 1 .. 40);
  • PARI
    a(n)=4*n^3+16*n^2+8*n+2*(-1)^n*(n-2)-3 \\ Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = 4*n^3 + 16*n^2 + 8*n + 2*(-1)^n*(n - 2) - 3.
G.f.: x*(27 + 55*x + 26*x^2 + 2*x^3 - 21*x^4 + 7*x^5)/((1+x)^2*(1-x)^4). - Bruno Berselli, Jul 27 2011
Showing 1-10 of 14 results. Next