A241732
Primes p such that p^3 + 2 and p^3 - 2 are semiprime.
Original entry on oeis.org
2, 11, 13, 17, 41, 89, 101, 239, 271, 331, 571, 641, 719, 1051, 1231, 1321, 1549, 1559, 1721, 1741, 1831, 1993, 1999, 2029, 2311, 2459, 2749, 2837, 2861, 2939, 3389, 3467, 3671, 4049, 4111, 4273, 4787, 4919, 4969, 5657, 5689, 5861, 6221, 6679, 6691, 6829, 7109
Offset: 1
11 is prime and appears in the sequence because 11^3 + 2 = 1333 = 31 * 43 and 11^3 - 2 = 1329 = 3 * 443, both are semiprime.
41 is prime and appears in the sequence because 41^3 + 2 = 68923 = 157 * 439 and 41^3 - 2 = 68919 = 3 * 22973, both are semiprime.
Cf.
A001358,
A063637,
A063638,
A072381,
A082919,
A145292,
A228183,
A237627,
A241483,
A241493,
A241659.
-
with(numtheory): KD:= proc() local k; k:=ithprime(n); if bigomega(k^3+2)=2 and bigomega(k^3-2)=2 then k; fi; end: seq(KD(), n=1..2000);
-
A241732 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 + 2] == 2 && PrimeOmega[t^3 - 2] == 2, AppendTo[A241732, t]], {n, 500}]; A241732
Select[Prime[Range[1000]],PrimeOmega[#^3+2]==PrimeOmega[#^3-2]==2&] (* Harvey P. Dale, Jun 20 2019 *)
A268405
Numbers m such that m^2 + m + 41 is a product of 7 primes.
Original entry on oeis.org
3019035, 3312609, 4005577, 4205871, 4270887, 4502832, 4838229, 4933775, 5086008, 6142338, 6618260, 6932403, 6941996, 7263518, 7375900, 7643466, 7939002, 8268798, 8473961, 8485664, 8499341, 8892530, 8978097, 8991587, 9075462, 9317324, 9469974, 9709914, 9736792, 9745217
Offset: 1
A241607
Semiprimes generated by the polynomial (1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316).
Original entry on oeis.org
5141923, 6084557, 11403823, 13201987, 17488411, 20017609, 33239291, 37446979, 42070423, 47139347, 72512623, 88747907, 118408673, 129881707, 169708339, 184952323, 201267887, 278376073, 324881567, 406044923, 436421497, 538566199, 616639427, 658920007, 750410069
Offset: 1
For n=57: (1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316) = 5141923 = 821 * 6263, which is a semiprime and is included in the sequence.
For n=58: (1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316) = 6084557 = 131 * 46447, which is a semiprime and is included in the sequence.
-
with(numtheory): KD:= proc() local a,b,k; k:=(1/4)*(n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316); a:=bigomega(k); if a=2 then RETURN (k); fi; end: seq(KD(), n=0..200);
-
A241607 = {}; Do[k= (1/4) * (n^5 - 133 * n^4 + 6729 * n^3 - 158379 * n^2 + 1720294 * n - 6823316); If[PrimeOmega[k] ==2, AppendTo[A241607, k]], {n,200}]; A241607
(*For the b-file:*) n=0;Do[t=((1/4) * (k^5 - 133 * k^4 + 6729 * k^3 - 158379 * k^2 + 1720294 * k - 6823316));If[PrimeOmega[t]==2, n++; Print[n," ",t]], {k,10^6}]
-
s=[]; for(n=1, 200, t=(1/4)*(n^5-133*n^4+6729*n^3-158379*n^2+1720294*n-6823316); if(bigomega(t)==2, s=concat(s, t))); s \\ Colin Barker, Apr 26 2014
A242243
Semiprimes sp of the form p^2 + q + 1 where p and q are consecutive primes.
Original entry on oeis.org
15, 33, 187, 309, 559, 1411, 1897, 2263, 2869, 3543, 6979, 10717, 11559, 11995, 22353, 32953, 39009, 54529, 57363, 58333, 66313, 77011, 80383, 113917, 120759, 124969, 147079, 158011, 167701, 175983, 177673, 237661, 241581, 253519, 299767, 310813, 376387, 381309
Offset: 1
a(1) = 15 = 3^2 + 5 + 1 = 3 * 5 is semiprime, 3 and 5 are consecutive primes.
a(2) = 33 = 5^2 + 7 + 1 = 3 * 11 is semiprime, 5 and 7 are consecutive primes.
-
with(numtheory): A242243:= proc()local k ; k:=(ithprime(x)^2+ithprime(x+1)+1);if bigomega(k)=2 then RETURN (k); fi;end: seq(A242243 (),x=1..500);
-
Select[Table[Prime[n]^2 + Prime[n + 1] + 1, {n, 500}], PrimeOmega[#] == 2 &]
A284043
Starts of a run of at least n consecutive numbers k for which k^2 - k + 41 is composite.
Original entry on oeis.org
41, 41, 122, 162, 299, 326, 326, 1064, 1064, 1064, 1064, 1064, 5664, 5664, 5664, 5664, 9265, 9265, 9265, 22818, 22818, 37784, 37784, 47494, 100202, 100202, 100202, 167628, 167628, 167628, 167628, 167628, 167628, 167628, 167628, 176956, 176956, 176956, 1081297
Offset: 1
The values of f(n)=n^2-n+41 at 122, 123 and 124 are: 14803 = 113*131, 15047 = 41*367 and 15293 = 41*373. This is the first case of 3 consecutive composite values, thus a(3) = 122.
- Thomas Koshy, Elementary Number Theory with Applications, Academic Press, 2nd edition, 2007, Chapter 2, p. 147, exercise 50.
- Amiram Eldar, Table of n, a(n) for n = 1..130 (terms below 10^10)
- Sidney Kravitz, Problem 527, Mathematics Magazine, Vol. 36, No. 4 (1963), p. 264.
- Lawrence A. Ringenberg et al., A Prime Generator, Solutions to Problem 527, Mathematics Magazine, Vol. 37, No. 2 (1964), pp. 122-123.
-
f[n_] := n^2 - n + 41; a = PrimeQ[f[Range[1, 10^7]]]; b = Split[a]; c = Length /@ b; d = Accumulate[c]; nc = Length[c]; e = {}; For[len = 0, len < 100, len++; k = 2; While[k <= nc && c[[k]] < len, k += 2]; If[k <= nc && c[[k]] >= len, ind = d[[k - 1]] + 1; e = AppendTo[e, ind]]]; e
A330673
The possible v-factors for any A202018(k) (while A202018(k) = v * w, v and w are integers, w >= v >= 41, v = w iff w = 41, all such v-factors form the set V).
Original entry on oeis.org
41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 163, 167, 173, 179, 197, 199, 223, 227, 251, 263, 281, 307, 313, 347, 359, 367, 373, 379, 383, 397, 409, 419, 421, 439, 457, 461, 487, 499, 503, 523, 547, 563, 577, 593, 607, 641, 647, 653, 661, 673, 677, 691, 701, 709, 733
Offset: 0
Let i = 3, t = 1, j = -1. Then v(i,t,j) = m(j) * i^2 + b + ja = 41 * 3^2 + 4 - 6 = 41 * 9 - 2 = 367, and 367 is a term of a(n).
We could find all terms of a(n) v < 10^n and then all Euler primes p < 10^(2n) (for n > 1, number of all numbers m such that are terms of A202018 (and any m < 10^(2n)) is 10^n; trivial).
Let 2n = 10; it's easy to establish that, while i > 49, any v(i,t,j)^2 > 10^10; thus, we can use 0 < i < 50 to find all numbers v < 10^5. While m is a term of A202018, m < 10^10, m is composite iff there is at least one v such that m == 0 (mod v); otherwise, m is prime. We could easily remove all "false" numbers v that cannot be divisors of any m. Let p' be a regular prime (p' is a term of A000040, but not of a(n)) such that any 3p' < UB(i); in our case, any 3p' < 50. Thus, we could try any v with p' = {2,3,5,7,11,13}; if v == 0 (mod p'), it is "false"; otherwise, there is at least one m < 10^10 such that m == 0 (mod v).
Comments