cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A185323 E.g.f. A(x) = 1/(2-tan(x)-sec(x)).

Original entry on oeis.org

1, 1, 3, 14, 87, 676, 6303, 68564, 852387, 11921476, 185259603, 3166825364, 59054916687, 1193026564276, 25955467164903, 605021502144164, 15043243752072987, 397412126087559076, 11116403953041202203, 328222705791221254964
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 17 2011

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=n then 1
        elif k<0 or k>n then 0
        else T(n-1, k-1) +k*T(n-1, k) +k*(k+1)/2 *T(n-1, k+1)
          fi
        end:
    a:= n-> add(k! * T(n, k), k=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 18 2011
  • Mathematica
    CoefficientList[Series[1/(2-Tan[x]-Sec[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 25 2013 *)
  • PARI
    x = 'x + O('x^30); Vec(serlaplace(1/(2-tan(x)-1/cos(x)))) \\ Michel Marcus, Jun 27 2017

Formula

a(n) = Sum_{k=1..n} k!*A147315(n,k), n>0. a(0)=1.
E.g.f.: 1 + x/(U(0)-x) where U(k)= 4*k+1 - x/(2 - x/(4*k+3 + x/(2 + x/U(k+1))));(continued fraction, 4-step). - Sergei N. Gladkovskii, Nov 08 2012
a(n) ~ n! * 2/(5*arctan(3/4)^(n+1)). - Vaclav Kotesovec, Sep 25 2013

A185324 E.g.f. log(1/(2-tan(x)-sec(x))).

Original entry on oeis.org

0, 1, 2, 7, 34, 215, 1682, 15727, 171274, 2130275, 29799722, 463123747, 7916886514, 147635940335, 2982555226562, 64888568231767, 1512552803481754, 37608099684426395, 993530210286226202, 27791008680163167787, 820556749933610580994, 25502885614554196884455
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 17 2011

Keywords

Programs

  • Maple
    T:= proc(n,k) option remember;
          if k=n then 1
        elif k<0 or k>n then 0
        else T(n-1, k-1) +k*T(n-1,k) +k*(k+1)/2 *T(n-1, k+1)
          fi
        end:
    a:= n-> add((k-1)! * T(n,k), k=1..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 17 2011
  • Mathematica
    T[n_, k_] := T[n, k] = If[k==n, 1, If[k<0 || k>n, 0, T[n-1, k-1] + k*T[n-1, k] +  k*(k+1)/2*T[n-1, k+1]]]; a[n_] := Sum[(k-1)!*T[n, k], {k, 1, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 03 2015, after Alois P. Heinz *)
  • Maxima
    a[0]:0$a[1]:1$
    a[n]:=sum((-1)^floor(p/2)*(mod(p+1,2)-(-1)^p*4^floor(p/2))*binomial(n-1,p)*a[n-p],p,1,n-1)-mod(n-1,2)*(%i)^n;
    makelist(a[n],n,0,100); /* Tani Akinari, Oct 30 2017 */

Formula

a(n) = Sum_{k=1..n} (k-1)! * A147315(n,k).
a(n) ~ (n-1)! / (arctan(3/4))^n. - Vaclav Kotesovec, Aug 22 2014

A240561 The main diagonal in the difference table of A240559.

Original entry on oeis.org

0, 1, -10, 178, -5296, 238816, -15214480, 1301989648, -144118832896, 20040052293376, -3419989086092800, 702831038438522368, -171209091176316215296, 48783404012394865985536, -16074763418934659189278720, 6065554251200571899397081088, -2598468976240882751482797162496
Offset: 0

Views

Author

Peter Luschny, Apr 17 2014

Keywords

Examples

			a(n) is the main diagonal in this difference table D(n, k):
[    0,     0,     1,    -3,    -5,    45,    61, -1113, -1385]
[    0,     1,    -2,    -8,    40,   106, -1052, -2498]
[    1,    -1,   -10,    32,   146,  -946, -3550]
[    0,   -11,    22,   178,  -800, -4496]
[  -11,    11,   200,  -622, -5296]
[    0,   211,  -422, -5918]
[  211,  -211, -6340]
[    0, -6551]
[-6551]
D(n, 0) = A240560(n).
D(0, n) = A240559(n).
D(2*n, 0) = (-1)^(n+1)*A147315(2*n, 2).
		

Crossrefs

Programs

  • Maple
    A240561_list := proc(len) local A, m, n, k;
    n := 2*len-1; A := array(0..n, 0..n);
    for m from 0 to n do
       A[m, 0] := euler(m) + 2^(m+1)*euler(m+1,0);
       for k from m-1 by -1 to 0 do
          A[k, m-k] := A[k+1, m-k-1] - A[k, m-k-1]
    od od; [seq(A[k, k], k=0..len-1)] end:
    A240561_list(17);
  • Mathematica
    Table[-Sum[Binomial[n, k]*EulerE[n+k+1], {k, 0, n}],{n,0,20}] (* Vaclav Kotesovec, Apr 06 2015 *)
  • Maxima
    a(n):=-sum(binomial(n,k)*euler(n+k+1),k,0,n); /* Vladimir Kruchinin, Apr 06 2015 */

Formula

a(n) = -Sum_{k=0..n}(C(n,k)*Euler(n+k+1)). - Vladimir Kruchinin, Apr 06 2015
a(n) ~ (-1)^(n+1) * 2^(4*n+9/2) * n^(2*n+3/2) / (exp(2*n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, Apr 06 2015
Previous Showing 11-13 of 13 results.