cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A154776 Decimal expansion of log_6 (16).

Original entry on oeis.org

1, 5, 4, 7, 4, 1, 1, 2, 2, 8, 9, 3, 8, 1, 6, 6, 3, 4, 7, 4, 8, 0, 9, 8, 4, 5, 5, 3, 8, 7, 1, 2, 8, 3, 5, 0, 5, 8, 6, 0, 5, 6, 7, 4, 3, 7, 8, 2, 8, 4, 1, 3, 7, 1, 3, 5, 5, 7, 9, 7, 9, 7, 1, 5, 3, 0, 6, 5, 6, 8, 0, 7, 4, 1, 6, 2, 8, 9, 1, 2, 1, 5, 3, 2, 6, 6, 0
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.5474112289381663474809845538712835058605674378284137135579...
		

Crossrefs

Cf. decimal expansion of log_6(m): A152683 (m=2), A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), this sequence, A154856 (m=17), A154911 (m=18), A155044 (m=19), A155490 (m=20), A155554 (m=21), A155697 (m=22), A155823 (m=23), A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(16)/Log(6); // G. C. Greubel, Sep 13 2018
  • Mathematica
    RealDigits[Log[6, 16], 10, 100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(16)/log(6) \\ G. C. Greubel, Sep 13 2018
    

A154856 Decimal expansion of log_6 (17).

Original entry on oeis.org

1, 5, 8, 1, 2, 4, 6, 4, 7, 4, 6, 0, 4, 5, 6, 9, 2, 1, 0, 8, 4, 5, 8, 2, 3, 9, 8, 7, 0, 2, 4, 3, 2, 2, 8, 1, 2, 4, 1, 3, 1, 8, 4, 8, 9, 2, 7, 0, 6, 0, 2, 0, 9, 8, 1, 3, 0, 6, 8, 0, 5, 5, 3, 3, 4, 7, 0, 4, 0, 0, 0, 5, 6, 6, 2, 7, 7, 6, 4, 3, 9, 2, 5, 8, 6, 4, 6, 9, 9, 4, 7, 8, 7, 3, 7, 5, 4, 8, 6
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.5812464746045692108458239870243228124131848927060209813068...
		

Crossrefs

Cf. decimal expansion of log_6(m): A152683 (m=2), A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), this sequence, A154911 (m=18), A155044 (m=19), A155490 (m=20), A155554 (m=21), A155697 (m=22), A155823 (m=23), A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(17)/Log(6); // G. C. Greubel, Sep 13 2018
  • Mathematica
    RealDigits[Log[6, 17], 10, 100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(17)/log(6) \\ G. C. Greubel, Sep 13 2018
    

A154911 Decimal expansion of log_6 (18).

Original entry on oeis.org

1, 6, 1, 3, 1, 4, 7, 1, 9, 2, 7, 6, 5, 4, 5, 8, 4, 1, 3, 1, 2, 9, 7, 5, 3, 8, 6, 1, 5, 3, 2, 1, 7, 9, 1, 2, 3, 5, 3, 4, 8, 5, 8, 1, 4, 0, 5, 4, 2, 8, 9, 6, 5, 7, 1, 6, 1, 0, 5, 0, 5, 0, 7, 1, 1, 7, 3, 3, 5, 7, 9, 8, 1, 4, 5, 9, 2, 7, 7, 1, 9, 6, 1, 6, 8, 3, 4
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.6131471927654584131297538615321791235348581405428965716105...
		

Crossrefs

Cf. decimal expansion of log_6(m): A152683 (m=2), A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), this sequence, A155044 (m=19), A155490 (m=20), A155554 (m=21), A155697 (m=22), A155823 (m=23), A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(18)/Log(6); // G. C. Greubel, Sep 13 2018
  • Mathematica
    RealDigits[Log[6, 18], 10, 100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(18)/log(6) \\ G. C. Greubel, Sep 13 2018
    

Formula

Equals A152935+1. - Bruno Berselli, Aug 31 2013

A155044 Decimal expansion of log_6 (19).

Original entry on oeis.org

1, 6, 4, 3, 3, 2, 2, 6, 8, 3, 5, 0, 4, 4, 9, 6, 9, 4, 4, 3, 3, 1, 3, 4, 1, 4, 4, 5, 4, 6, 6, 9, 4, 6, 7, 2, 7, 2, 1, 9, 7, 8, 3, 6, 7, 1, 6, 7, 9, 4, 1, 9, 4, 1, 8, 6, 1, 3, 7, 1, 3, 5, 3, 4, 4, 8, 7, 9, 4, 7, 7, 9, 6, 2, 6, 7, 6, 9, 5, 0, 9, 7, 9, 2, 8, 2, 7, 3, 8, 1, 0, 5, 0, 9, 1, 4, 5, 6, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.6433226835044969443313414454669467272197836716794194186137...
		

Crossrefs

Cf. decimal expansion of log_6(m): A152683 (m=2), A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), this sequence, A155490 (m=20), A155554 (m=21), A155697 (m=22), A155823 (m=23), A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(19)/Log(6); // G. C. Greubel, Sep 13 2018
  • Mathematica
    RealDigits[Log[6, 19], 10, 100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(19)/log(6) \\ G. C. Greubel, Sep 13 2018
    

A155490 Decimal expansion of log_6 (20).

Original entry on oeis.org

1, 6, 7, 1, 9, 5, 0, 0, 1, 6, 1, 7, 3, 0, 1, 0, 3, 4, 6, 8, 1, 3, 7, 2, 5, 2, 3, 5, 0, 2, 2, 1, 1, 0, 4, 2, 5, 1, 8, 0, 8, 7, 5, 0, 7, 2, 7, 3, 8, 8, 5, 4, 6, 5, 6, 2, 5, 9, 6, 8, 8, 8, 4, 6, 8, 9, 6, 6, 3, 5, 2, 1, 2, 1, 5, 7, 5, 8, 5, 2, 3, 7, 9, 7, 7, 9, 8, 5, 2, 9, 7, 3, 5, 5, 8, 0, 1, 4, 8
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.6719500161730103468137252350221104251808750727388546562596...
		

Crossrefs

Cf. decimal expansion of log_6(m): A152683 (m=2), A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), A155044 (m=19), this sequence, A155554 (m=21), A155697 (m=22), A155823 (m=23), A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(20)/Log(6); // G. C. Greubel, Sep 13 2018
  • Mathematica
    RealDigits[Log[6, 20], 10, 100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(20)/log(6) \\ G. C. Greubel, Sep 13 2018
    

A155554 Decimal expansion of log_6 (21).

Original entry on oeis.org

1, 6, 9, 9, 1, 8, 0, 3, 2, 5, 2, 6, 7, 1, 5, 0, 2, 5, 6, 1, 1, 5, 7, 9, 5, 9, 1, 2, 4, 6, 0, 0, 0, 0, 4, 5, 6, 4, 5, 3, 6, 3, 9, 0, 9, 5, 7, 4, 4, 0, 8, 9, 5, 6, 6, 4, 9, 7, 6, 0, 7, 5, 3, 1, 4, 4, 9, 9, 5, 2, 6, 2, 7, 3, 3, 1, 4, 2, 2, 8, 4, 7, 1, 5, 8, 6, 8, 9, 3, 6, 0, 8, 9, 4, 3, 2, 8, 0, 2
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.6991803252671502561157959124600004564536390957440895664976...
		

Crossrefs

Cf. decimal expansion of log_6(m): A152683 (m=2), A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), A155044 (m=19), A155490 (m=20), this sequence, A155697 (m=22), A155823 (m=23), A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(21)/Log(6); // G. C. Greubel, Sep 13 2018
  • Mathematica
    RealDigits[Log[6,21],10,120][[1]] (* Harvey P. Dale, Jul 17 2011 *)
  • PARI
    default(realprecision, 100); log(21)/log(6) \\ G. C. Greubel, Sep 13 2018
    

A155697 Decimal expansion of log_6 (22).

Original entry on oeis.org

1, 7, 2, 5, 1, 4, 3, 6, 4, 0, 3, 4, 0, 3, 1, 4, 1, 2, 6, 8, 2, 8, 6, 6, 3, 7, 4, 9, 3, 4, 0, 8, 0, 4, 0, 7, 4, 8, 7, 6, 7, 9, 8, 6, 7, 6, 6, 7, 8, 1, 4, 3, 2, 8, 4, 9, 6, 1, 0, 9, 9, 4, 9, 1, 0, 3, 4, 9, 7, 3, 6, 3, 9, 4, 1, 5, 5, 7, 9, 9, 4, 2, 2, 4, 0, 8, 9, 1, 7, 3, 5, 6, 8, 5, 8, 5, 1, 2, 2
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.7251436403403141268286637493408040748767986766781432849610...
		

Crossrefs

Cf. decimal expansion of log_6(m): A152683 (m=2), A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), A155044 (m=19), A155490 (m=20), A155554 (m=21), this sequence, A155823 (m=23), A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(22)/Log(6); // G. C. Greubel, Sep 13 2018
  • Mathematica
    RealDigits[Log[6, 22], 10, 100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(22)/log(6) \\ G. C. Greubel, Sep 13 2018
    

A155823 Decimal expansion of log_6 (23).

Original entry on oeis.org

1, 7, 4, 9, 9, 5, 2, 6, 4, 1, 4, 0, 0, 0, 2, 9, 4, 8, 1, 1, 6, 1, 6, 1, 0, 2, 0, 7, 7, 9, 7, 2, 9, 2, 6, 7, 3, 7, 6, 8, 0, 7, 7, 5, 9, 7, 7, 1, 2, 8, 6, 0, 4, 8, 5, 0, 8, 3, 2, 7, 0, 2, 0, 9, 0, 5, 9, 2, 4, 3, 9, 6, 5, 1, 3, 7, 2, 3, 5, 4, 1, 8, 7, 0, 9, 9, 5, 5, 3, 0, 4, 8, 4, 7, 0, 1, 4, 3, 9
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.7499526414000294811616102077972926737680775977128604850832...
		

Crossrefs

Cf. decimal expansion of log_6(m): A152683 (m=2), A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), A155044 (m=19), A155490 (m=20), A155554 (m=21), A155697 (m=22), this sequence, A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(23)/Log(6); // G. C. Greubel, Sep 13 2018
  • Mathematica
    RealDigits[Log[6, 23], 10, 100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(23)/log(6) \\ G. C. Greubel, Sep 13 2018
    

A155959 Decimal expansion of log_6 (24).

Original entry on oeis.org

1, 7, 7, 3, 7, 0, 5, 6, 1, 4, 4, 6, 9, 0, 8, 3, 1, 7, 3, 7, 4, 0, 4, 9, 2, 2, 7, 6, 9, 3, 5, 6, 4, 1, 7, 5, 2, 9, 3, 0, 2, 8, 3, 7, 1, 8, 9, 1, 4, 2, 0, 6, 8, 5, 6, 7, 7, 8, 9, 8, 9, 8, 5, 7, 6, 5, 3, 2, 8, 4, 0, 3, 7, 0, 8, 1, 4, 4, 5, 6, 0, 7, 6, 6, 3, 3, 0, 4, 6, 0, 0, 5, 8, 9, 6, 3, 2, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.7737056144690831737404922769356417529302837189142068567789...
		

Crossrefs

Cf. decimal expansion of log_6(m): A152683 (m=2), A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), A155044 (m=19), A155490 (m=20), A155554 (m=21), A155697 (m=22), A155823 (m=23), this sequence.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(24)/Log(6); // G. C. Greubel, Sep 13 2018
  • Mathematica
    RealDigits[Log[6, 24], 10, 100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(24)/log(6) \\ G. C. Greubel, Sep 13 2018
    

A085239 Sort the numbers 2^i and 3^j. Then a(n) is the base of the n-th term. Set a(1)=1.

Original entry on oeis.org

1, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2003

Keywords

Comments

The density of 2's in this sequence is log(3)/log(6). The density of 3's in this sequence is log(2)/log(6). - Jennifer Buckley, Apr 24 2024

Crossrefs

Programs

  • Haskell
    a085239 1 = 1
    a085239 n = a006899 n `mod` 2 + 2  -- Reinhard Zumkeller, Oct 09 2013
    
  • Mathematica
    m = 40;
    Join[{1}, If[Total[IntegerDigits[#, 2]] == 1, 2, 3]& /@ Union[3^Range[m], 2^Range[Length[IntegerDigits[3^m, 2]] - 1]]] (* Jean-François Alcover, Oct 07 2021 *)
  • PARI
    upto(L) = my(v2=2, v3=1, r=List(1)); while(v3Ruud H.G. van Tol, May 10 2024
    
  • Python
    from sympy import integer_log
    def A085239(n): return 1 if n==1 else 2 if 6**integer_log(m:=3**(n-1),6)[0]<<1Chai Wah Wu, Feb 04 2025

Formula

A006899(n) = a(n)^A085238(n).
For n > 1: a(n) = 2 + A006899(n) mod 2. - Reinhard Zumkeller, Oct 09 2013
Previous Showing 21-30 of 30 results.