cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A105394 Decimal expansion of sum of reciprocals of squares of Lucas numbers.

Original entry on oeis.org

1, 2, 0, 7, 2, 9, 1, 9, 9, 6, 9, 8, 5, 7, 4, 7, 0, 7, 4, 4, 1, 7, 2, 0, 4, 1, 8, 4, 2, 5, 7, 6, 9, 9, 9, 4, 5, 3, 0, 6, 9, 2, 1, 4, 5, 4, 0, 1, 9, 0, 3, 6, 3, 7, 6, 9, 5, 1, 3, 1, 1, 5, 9, 4, 2, 2, 1, 2, 2, 4, 0, 0, 1, 5, 4, 0, 7, 0, 3, 5, 7, 7, 6, 1, 6, 7, 7, 6, 5, 5, 9, 7, 8, 6, 8, 8, 9, 9, 9, 2
Offset: 1

Views

Author

Jonathan Vos Post, Apr 04 2005

Keywords

Comments

This constant is transcendental (Duverney et al., 1997). - Amiram Eldar, Oct 30 2020

Examples

			1.207291996985747074417204...
		

References

  • Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Wiley, 1987, p. 97.

Crossrefs

Cf. A000032, A001254 (squares of Lucas numbers).

Programs

  • Mathematica
    f[n_] := f[n] = RealDigits[ Sum[ 1/LucasL[k]^2, {k, 1, n}], 10, 100] // First; f[n=100]; While[f[n] != f[n-100], n = n+100]; f[n] (* Jean-François Alcover, Feb 13 2013 *)

Formula

Equals Sum_{n >= 1} 1/L(n)^2.
Equals (1/8)*( theta_3(beta)^4 - 1 ), where beta = (3 - sqrt(5))/2 and theta_3(q) = 1 + 2*Sum_{n >= 1} q^(n^2) is a theta function. See Borwein and Borwein, Exercise 7(f), p. 97. - Peter Bala, Nov 13 2019
Equals c*(2*c+1), where c = A153415 (follows from the identity Sum_{n=-oo..oo} 1/L(n^2) = (Sum_{n=-oo..oo} 1/L(2*n))^2, see Bruckman, 1982). - Amiram Eldar, Jan 27 2022

A153416 Decimal expansion of Sum_{n>=0} 1/A000032(2*n+1).

Original entry on oeis.org

1, 3, 9, 6, 6, 8, 0, 4, 9, 7, 3, 9, 8, 2, 6, 1, 2, 3, 2, 5, 9, 2, 8, 6, 5, 8, 0, 7, 4, 6, 3, 1, 2, 1, 5, 2, 2, 9, 1, 3, 4, 4, 8, 8, 1, 9, 2, 9, 6, 3, 1, 3, 8, 5, 0, 6, 3, 8, 3, 7, 0, 8, 2, 7, 1, 6, 2, 4, 8, 6, 0, 5, 3, 0, 1, 6, 2, 5, 1, 6, 9, 2, 3, 6, 4, 1, 8, 6, 2, 2, 0, 6, 6, 2, 2, 1, 6, 3, 6, 9, 5, 8, 0, 3, 4
Offset: 1

Views

Author

Eric W. Weisstein, Dec 25 2008

Keywords

Examples

			1.3966804973982612325...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ NSum[ 1/LucasL[2*n + 1], {n, 0, Infinity}, WorkingPrecision -> 110, NSumTerms -> 100], 10, 105] // First (* Jean-François Alcover, Feb 07 2013 *)

Formula

From Amiram Eldar, Jul 05 2025: (Start)
Equals Sum_{n>=0} 1/A002878(n).
Equals A093540 - A153415. (End)

A338612 Decimal expansion of Sum_{k>=1} (-1)^(k+1)/L(k) where L(k) is the k-th Lucas number (A000032).

Original entry on oeis.org

8, 3, 0, 5, 0, 2, 8, 2, 1, 5, 8, 6, 8, 7, 6, 6, 8, 2, 3, 1, 6, 9, 3, 6, 4, 8, 6, 2, 5, 1, 0, 5, 9, 5, 1, 9, 1, 7, 7, 3, 0, 4, 6, 2, 1, 4, 3, 0, 4, 0, 8, 2, 8, 0, 1, 4, 6, 0, 2, 6, 4, 1, 3, 9, 0, 7, 9, 1, 0, 4, 9, 8, 4, 8, 6, 0, 4, 3, 0, 0, 6, 7, 4, 9, 3, 3, 0
Offset: 0

Views

Author

Amiram Eldar, Nov 03 2020

Keywords

Comments

André-Jeannin (1989) proved that this constant is irrational, and Tachiya (2004) proved that it does not belong to the quadratic number field Q(sqrt(5)).

Examples

			0.83050282158687668231693648625105951917730462143040...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[(-1)^(n+1)/LucasL[n], {n, 1, 1000}], 10, 120][[1]]

Formula

Equals A153416 - A153415.
Equals Sum_{k>=1} (-1)^(k+1) * Fibonacci(k)/Fibonacci(2*k).
Equals Sum_{k>=1} (-1)^(k+1)/(phi^k + (1-phi)^k), where phi is the golden ratio (A001622).
Equals Sum_{k>=0} 1/(phi^(2*k+1) + (-1)^k).
Previous Showing 11-13 of 13 results.