cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A154909 Decimal expansion of log_4 (18).

Original entry on oeis.org

2, 0, 8, 4, 9, 6, 2, 5, 0, 0, 7, 2, 1, 1, 5, 6, 1, 8, 1, 4, 5, 3, 7, 3, 8, 9, 4, 3, 9, 4, 7, 8, 1, 6, 5, 0, 8, 7, 5, 9, 8, 1, 4, 4, 0, 7, 6, 9, 2, 4, 8, 1, 0, 6, 0, 4, 5, 5, 7, 5, 2, 6, 5, 4, 5, 4, 1, 0, 9, 8, 2, 2, 7, 7, 9, 4, 3, 5, 8, 5, 6, 2, 5, 2, 2, 2, 8, 0, 4, 7, 4, 9, 1, 8, 0, 8, 8, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.0849625007211561814537389439478165087598144076924810604557...
		

Crossrefs

Cf. A020857 (log_2(3)).
Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), this sequence, A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 18], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

Formula

Equals A020857+1/2. - R. J. Mathar, Feb 15 2025

A155004 Decimal expansion of log_4 (19).

Original entry on oeis.org

2, 1, 2, 3, 9, 6, 3, 7, 5, 6, 7, 2, 1, 7, 9, 2, 7, 4, 6, 8, 9, 6, 7, 5, 9, 7, 1, 1, 4, 5, 3, 4, 1, 7, 2, 1, 1, 3, 4, 6, 7, 5, 3, 7, 8, 4, 8, 3, 0, 7, 6, 7, 0, 0, 7, 2, 9, 0, 7, 6, 2, 3, 6, 5, 4, 3, 2, 2, 8, 2, 6, 0, 4, 1, 0, 2, 7, 3, 2, 4, 4, 3, 4, 0, 1, 3, 5, 4, 0, 2, 7, 0, 8, 6, 0, 8, 8, 2, 5
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.1239637567217927468967597114534172113467537848307670072907...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), this sequence, A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

A155183 Decimal expansion of log_4 (20).

Original entry on oeis.org

2, 1, 6, 0, 9, 6, 4, 0, 4, 7, 4, 4, 3, 6, 8, 1, 1, 7, 3, 9, 3, 5, 1, 5, 9, 7, 1, 4, 7, 4, 4, 6, 9, 5, 0, 8, 7, 9, 3, 2, 4, 1, 5, 6, 9, 6, 5, 1, 2, 2, 9, 0, 3, 0, 6, 0, 2, 7, 3, 7, 8, 1, 9, 7, 9, 0, 7, 9, 6, 7, 3, 8, 8, 3, 0, 4, 3, 1, 2, 6, 0, 7, 9, 2, 5, 0, 6, 9, 8, 7, 1, 6, 7, 9, 6, 8, 5, 0, 7
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.1609640474436811739351597147446950879324156965122903060273...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), this sequence, A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 20], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

Formula

Equals 1/2+ A154155 = 1 + A153201. - R. J. Mathar, May 25 2023

A155545 Decimal expansion of log_4 (21).

Original entry on oeis.org

2, 1, 9, 6, 1, 5, 8, 7, 1, 1, 3, 8, 9, 3, 8, 0, 1, 4, 4, 4, 4, 7, 8, 5, 4, 1, 3, 0, 5, 8, 9, 8, 2, 3, 6, 5, 8, 7, 0, 0, 4, 2, 0, 5, 1, 6, 8, 2, 9, 3, 1, 0, 9, 2, 2, 0, 6, 6, 5, 2, 2, 1, 8, 9, 3, 0, 5, 7, 0, 9, 5, 3, 8, 3, 2, 8, 2, 7, 5, 7, 7, 4, 5, 1, 0, 0, 7, 0, 7, 3, 7, 0, 4, 4, 1, 4, 9, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.1961587113893801444478541305898236587004205168293109220665...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), this sequence, A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 21], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

A155695 Decimal expansion of log_4 (22).

Original entry on oeis.org

2, 2, 2, 9, 7, 1, 5, 8, 0, 9, 3, 1, 8, 6, 4, 8, 6, 2, 8, 0, 9, 9, 6, 8, 1, 5, 2, 3, 3, 6, 2, 8, 9, 6, 4, 7, 9, 3, 5, 1, 6, 1, 5, 7, 6, 2, 8, 4, 0, 8, 8, 4, 0, 3, 5, 6, 5, 6, 4, 0, 0, 8, 2, 2, 8, 6, 3, 1, 6, 5, 3, 0, 9, 8, 6, 0, 0, 0, 9, 1, 7, 6, 3, 5, 4, 7, 4, 5, 6, 4, 9, 6, 4, 3, 4, 5, 0, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.2297158093186486280996815233628964793516157628408840356564...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), this sequence, A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4,22],10,100][[1]]  (* Harvey P. Dale, Apr 18 2011 *)

A155818 Decimal expansion of log_4 (23).

Original entry on oeis.org

2, 2, 6, 1, 7, 8, 0, 9, 7, 8, 0, 2, 8, 5, 0, 6, 4, 3, 6, 1, 4, 7, 0, 7, 4, 1, 2, 2, 0, 8, 1, 3, 3, 4, 4, 2, 2, 2, 4, 9, 4, 1, 2, 5, 6, 2, 7, 2, 1, 2, 7, 7, 5, 2, 9, 7, 4, 7, 2, 2, 1, 8, 6, 6, 0, 0, 7, 3, 8, 9, 0, 7, 2, 7, 8, 1, 3, 8, 2, 3, 4, 8, 0, 5, 5, 3, 7, 7, 2, 6, 2, 9, 3, 1, 0, 4, 4, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.2617809780285064361470741220813344222494125627212775297472...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), this sequence, A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 23], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

A155936 Decimal expansion of log_4 (24).

Original entry on oeis.org

2, 2, 9, 2, 4, 8, 1, 2, 5, 0, 3, 6, 0, 5, 7, 8, 0, 9, 0, 7, 2, 6, 8, 6, 9, 4, 7, 1, 9, 7, 3, 9, 0, 8, 2, 5, 4, 3, 7, 9, 9, 0, 7, 2, 0, 3, 8, 4, 6, 2, 4, 0, 5, 3, 0, 2, 2, 7, 8, 7, 6, 3, 2, 7, 2, 7, 0, 5, 4, 9, 1, 1, 3, 8, 9, 7, 1, 7, 9, 2, 8, 1, 2, 6, 1, 1, 4, 0, 2, 3, 7, 4, 5, 9, 0, 4, 4, 1, 2
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.2924812503605780907268694719739082543799072038462405302278...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), this sequence.

Programs

  • Mathematica
    RealDigits[Log[4, 24], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

Formula

3/2 + A094148. - R. J. Mathar, Sep 24 2011

A373322 The number of indecomposable summands, counted with multiplicity, in tensor powers of the vector representation of SL2 in characteristic 2.

Original entry on oeis.org

1, 1, 1, 3, 3, 9, 9, 29, 29, 99, 99, 351, 351, 1273, 1273, 4679, 4679, 17341, 17341, 64637, 64637, 242019, 242019, 909789, 909789, 3432751, 3432751, 12998311, 12998311, 49387289, 49387289, 188261329, 188261329, 719860679, 719860679, 2760525963, 2760525963, 10614508493, 10614508493
Offset: 0

Views

Author

Daniel Tubbenhauer, Jun 01 2024

Keywords

Comments

In characteristic zero the analogous numbers are A001405.

Crossrefs

Cf. A001405 (for characteristic zero), A153460.

Programs

  • Mathematica
    a[0|1] = 1; a[n_] := a[n] = With[{m = Ceiling[n/2]}, Sum[Binomial[m-1, k] 2^(m-1-k) a[k], {k, 0, m-1}]]; Table[a[n], {n, 0, 40}]
  • PARI
    a(n) = if (n<=1, 1, my(m=ceil(n/2)); sum(k=0, m-1, binomial(m-1,k)*2^(m-1-k)*a(k))); \\ Michel Marcus, Jun 01 2024

Formula

a(0) = a(1) = 1, and for n>1: a(2n-1) = a(2n) = Sum_{k=0..n-1} binomial(n-1,k)*2^(n-1-k)*a(k).
a(n) ~ h(n)*n^(t)*2^n for t=1/2log_2(3/2)-1 approx. -0.707 and h(n) a bounded function. The constant t is A153460 - 2.
Previous Showing 11-18 of 18 results.