1, 2, 15, 22, 58, 157, 1030, 5269, 145048, 151710
Offset: 1
A153715
Greatest number m such that the fractional part of Pi^A153711(m) >= 1-(1/m).
Original entry on oeis.org
1, 7, 32, 53, 189, 2665, 10810, 26577, 128778, 483367
Offset: 1
a(3) = 32, since 1-(1/33) = 0.9696... > fract(Pi^A153711(3)) = fract(Pi^15) = 0.96938... >= 0.96875 = 1-(1/32).
-
$MaxExtraPrecision = 100000;
A153711 = {1, 2, 15, 22, 58, 157, 1030, 5269, 145048, 151710};
Floor[1/(1-FractionalPart[Pi^A153711])] (* Robert Price, Apr 18 2019 *)
A153717
Minimal exponents m such that the fractional part of (Pi-2)^m obtains a minimum (when starting with m=1).
Original entry on oeis.org
1, 20, 23, 24, 523, 2811, 3465, 3776, 4567, 6145, 8507, 9353, 19790, 41136, 62097, 72506, 107346
Offset: 1
A153723
Greatest number m such that the fractional part of (Pi-2)^A153719(m) >= 1-(1/m).
Original entry on oeis.org
1, 1, 1, 3, 16, 24, 45, 158, 410, 946, 1182, 8786, 16159, 20188, 61392, 78800, 78959, 217556
Offset: 1
a(5) = 16, since 1-(1/17) = 0.941176... > fract((Pi-2)^A153719(5)) = fract((Pi-2)^5) = 0.9389... >= 0.9375 = 1-(1/16).
-
$MaxExtraPrecision = 100000;
A153719 = {1, 2, 3, 4, 5, 39, 56, 85, 557, 911, 2919, 2921, 4491,
11543, 15724, 98040, 110932, 126659};
Floor[1/(1 - FractionalPart[(Pi - 2)^A153719])] (* Robert Price, Apr 18 2019 *)
A153705
Greatest number m such that the fractional part of e^A153701(n) <= 1/m.
Original entry on oeis.org
1, 2, 11, 11, 23, 28, 69, 85, 115, 964, 1153, 1292, 1296, 1877, 34015, 156075, 952945
Offset: 1
a(3)=11 since 1/12 < fract(e^A153701(3)) = fract(e^3) = 0.0855... <= 1/11.
-
A153701 = {1, 2, 3, 9, 29, 45, 75, 135, 219, 732, 1351, 3315, 4795,
4920, 5469, 28414, 37373};
Table[fp = FractionalPart[E^A153701[[n]]]; m = Floor[1/fp];
While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153701]}] (* Robert Price, Mar 25 2019 *)
Previous
Showing 21-30 of 58 results.
Next
Comments