cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 138 results. Next

A156159 Squares of the form k^2+(k+17)^2 with integer k.

Original entry on oeis.org

169, 289, 625, 2809, 7225, 18769, 93025, 243049, 635209, 3157729, 8254129, 21576025, 107267449, 280395025, 732947329, 3643933225, 9525174409, 24898630849, 123786459889, 323575532569, 845820499225, 4205095700689
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

Square roots of k^2+(k+17)^2 are in A155923, values k (except for -5) are in A118120.

Examples

			625 = 25^2 is of the form k^2+(k+17)^2 with k = 7: 7^2+24^2 = 625. Hence 625 is in the sequence.
		

Crossrefs

Equals A155923^2. Cf. A156160 (first trisection), A156161 (second trisection), A156162 (third trisection).
Cf. A118120, A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17), A157649 (decimal expansion of (387+182*sqrt(2))/17^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,34,-34,0,-1,1},{169,289,625,2809,7225,18769,93025},30] (* Harvey P. Dale, Apr 22 2022 *)
  • PARI
    {forstep(n=-5, 1600000, [1, 3], if(issquare(a=2*n*(n+17)+289), print1(a, ",")))}

Formula

a(n) = 34*a(n-3)-a(n-6)-2312 for n > 6; a(1)=169, a(2)=289, a(3)=625, a(4)=2809, a(5)=7225, a(6)=18769.
G.f.: x*(169+120*x+336*x^2-3562*x^3+336*x^4+120*x^5+169*x^6)/((1-x)*(1-34*x^3+x^6)).
Limit_{n -> oo} a(n)/a(n-3) = (17+12*sqrt(2)).
Limit_{n -> oo} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = ((387+182*sqrt(2))/17^2)^2 for n mod 3 = 1.

Extensions

G.f. corrected, fourth comment and cross-references edited by Klaus Brockhaus, Sep 23 2009

A156572 Squares of the form k^2+(k+23)^2 with integer k.

Original entry on oeis.org

289, 529, 1369, 4225, 13225, 42025, 139129, 444889, 1423249, 4721929, 15108769, 48344209, 160402225, 513249025, 1642275625, 5448949489, 17435353849, 55789022809, 185103876169, 592288777609, 1895184495649, 6288082836025
Offset: 1

Views

Author

Klaus Brockhaus, Feb 11 2009

Keywords

Comments

Square roots of k^2+(k+17)^2 are in A156567, values k are in A118337.

Examples

			4225 = 65^2 is of the form k^2+(k+23)^2 with k = 33: 33^2+56^2 = 4225. Hence 4225 is in the sequence.
		

Crossrefs

Cf. A156567, A156575 (first trisection), A156573 (second trisection), A156574 (third trisection).
Cf. A118337, A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)), A156571 (decimal expansion of (27+10*sqrt(2))/23), A157472 (decimal expansion of (627+238*sqrt(2))/23^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,34,-34,0,-1,1}, {289,529,1369,4225,13225,42025,139129}, 30] (* Harvey P. Dale, Mar 21 2020 *)
  • PARI
    {forstep(n=-8, 1800000, [1, 3], if(issquare(a=2*n*(n+23)+529), print1(a, ",")))}
    
  • Sage
    def f(n,p,q): return p*chebyshev_U(n,17) - q*chebyshev_U(n-1,17)
    def a(n):
        if (n%3==0): return -289*bool(n==0) + (1/4)*(529 + 3*f(n/3, 209, 5457))
        elif (n%3==1): return (1/4)*(529 + 3*f((n-1)/3, 209, 1649))
        else: return (1/4)*(529 + 3*f((n-2)/3, 529, 529))
    [a(n) for n in (1..30)] # G. C. Greubel, Jan 04 2022

Formula

a(n) = 34*a(n-3) - a(n-6) - 4232 for n > 6; a(1)=289, a(2)=529, a(3)=1369, a(4)=4225, a(5)=13225, a(6)=42025.
a(n) = A156567(n)^2.
G.f.: x*(289 +240*x +840*x^2 -6970*x^3 +840*x^4 +240*x^5 +289*x^6)/((1-x)*(1 -34*x^3 +x^6)).
Limit_{n -> infinity} a(n)/a(n-3) = 17 + 12*sqrt(2).
Limit_{n -> infinity} a(n)/a(n-1) = ((627 + 238*sqrt(2))/23^2)^2 for n mod 3 = 1.
Limit_{n -> infinity} a(n)/a(n-1) = ((27 + 10*sqrt(2))/23)^2 for n mod 3 = {0, 2}.
a(n) = -289*[n=0] + (529/4) + (3/4)*( f(n/3, 209, 5457)*(n mod 3 = 1) + f((n-1)/3, 209, 1649)*(n mod 3 = 1) + f((n-2)/2, 529, 529)*(n mod 3 = 2) ), where f(n, p, q) = p*ChebyshevU(n, 17) - q*ChebyshevU(n-1, 17). - G. C. Greubel, Jan 04 2022

Extensions

Revised by Klaus Brockhaus, Feb 16 2009
G.f. corrected, third comment and cross-references edited by Klaus Brockhaus, Sep 22 2009

A157120 Positive numbers y such that y^2 is of the form x^2+(x+103)^2 with integer x.

Original entry on oeis.org

73, 103, 205, 233, 515, 1157, 1325, 2987, 6737, 7717, 17407, 39265, 44977, 101455, 228853, 262145, 591323, 1333853, 1527893, 3446483, 7774265, 8905213, 20087575, 45311737, 51903385, 117078967, 264096157, 302515097, 682386227, 1539265205
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

(-48, a(1)) and (A157119(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+103)^2 = y^2.

Examples

			(-48, a(1)) = (-48, 73) is a solution: (-48)^2+(-48+103)^2 = 2304+3025 = 5329 = 73^2.
(A157119(1), a(2)) = (0, 103) is a solution: 0^2+(0+103)^2 = 10609 = 103^2,
(A157119(3), a(4)) = (105, 233) is a solution: 105^2+(105+103)^2 = 11025+43264 = 54289 = 233^2.
		

Crossrefs

Cf. A157119, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157121 (decimal expansion of 11+3*sqrt(2)), A157122 (decimal expansion of 11-3*sqrt(2)), A157123 (decimal expansion of (11+3*sqrt(2))/(11-3*sqrt(2))).

Programs

  • Mathematica
    Select[Table[Sqrt[x^2+(x+103)^2],{x,-50,3*10^6}],IntegerQ] (* THe program generates the first 20 terms of the sequence. *) (* or *) LinearRecurrence[ {0,0,6,0,0,-1},{73,103,205,233,515,1157},50](* Harvey P. Dale, Aug 19 2020 *)
  • PARI
    {forstep(n=-48, 1100000000, [1, 3], if(issquare(2*n^2+206*n+10609, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1) = 73, a(2) = 103, a(3) = 205, a(4) = 233, a(5) = 515, a(6) = 1157.
G.f.: x*(1-x)*(73+176*x+381*x^2+176*x^3+73*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 103*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))*(11-3*sqrt(2))^2/(11+3*sqrt(2))^2 for n mod 3 = 1.
Limit_{n -> oo} a(n)/a(n-1) = (11+3*sqrt(2))/(11-3*sqrt(2)) for n mod 3 = {0, 2}.

Extensions

Typo corrected by Klaus Brockhaus, Mar 01 2009

A157297 Positive numbers y such that y^2 is of the form x^2+(x+233)^2 with integer x.

Original entry on oeis.org

185, 233, 317, 793, 1165, 1717, 4573, 6757, 9985, 26645, 39377, 58193, 155297, 229505, 339173, 905137, 1337653, 1976845, 5275525, 7796413, 11521897, 30748013, 45440825, 67154537, 179212553, 264848537, 391405325, 1044527305, 1543650397
Offset: 1

Views

Author

Klaus Brockhaus, Apr 11 2009

Keywords

Comments

(-57, a(1)) and (A129625(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+233)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (251+66*sqrt(2))/233 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (82611+44030*sqrt(2))/233^2 for n mod 3 = 1.

Examples

			(-57, a(1)) = (-57, 185) is a solution: (-57)^2+(-57+233)^2 = 3249+30976 = 34225 = 185^2.
(A129625(1), a(2)) = (0, 233) is a solution: 0^2+(0+233)^2 = 54289 = 233^2.
(A129625(3), a(4)) = (432, 793) is a solution: 432^2+(432+233)^2 = 186624+442225 = 628849 = 793^2.
		

Crossrefs

Cf. A129625, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157298 (decimal expansion of (251+66*sqrt(2))/233), A157299 (decimal expansion of (82611+44030*sqrt(2))/233^2).

Programs

  • Magma
    I:=[185,233,317,793,1165,1717]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Mar 29 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {185,233,317,793,1165,1717}, 50] (* G. C. Greubel, Mar 29 2018 *)
  • PARI
    {forstep(n=-60, 1100000000, [3,1], if(issquare(2*n^2+466*n+54289, &k),print1(k, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=185, a(2)=233, a(3)=317, a(4)=793, a(5)=1165, a(6)=1717.
G.f.: (1-x)*(185 +418*x +735*x^2 +418*x^3 +185*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 233*A001653(k) for k >= 1.

A157299 Decimal expansion of (82611+44030*sqrt(2))/233^2.

Original entry on oeis.org

2, 6, 6, 8, 6, 5, 8, 9, 0, 2, 3, 7, 9, 6, 2, 3, 4, 0, 4, 3, 4, 9, 6, 5, 3, 7, 8, 8, 5, 5, 6, 6, 6, 9, 0, 5, 6, 3, 3, 5, 9, 5, 4, 8, 4, 6, 7, 0, 6, 4, 6, 0, 3, 0, 8, 0, 1, 7, 6, 3, 1, 7, 2, 7, 6, 7, 4, 7, 0, 2, 9, 9, 7, 4, 1, 5, 4, 3, 5, 4, 0, 9, 0, 2, 5, 4, 4, 8, 3, 0, 6, 9, 5, 8, 0, 5, 8, 8, 7, 8, 3, 6, 4, 3, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 11 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (82611+44030*sqrt(2))/233^2 for n mod 3 = 0, b = A129625.
lim_{n -> infinity} b(n)/b(n-1) = (82611+44030*sqrt(2))/233^2 for n mod 3 = 1, b = A157297.

Examples

			(82611+44030*sqrt(2))/233^2 = 2.66865890237962340434...
		

Crossrefs

Cf. A129625, A157297, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A157298 (decimal expansion of (251+66*sqrt(2))/233).

Programs

  • Magma
    (82611+44030*Sqrt(2))/233^2; // G. C. Greubel, Mar 29 2018
  • Mathematica
    RealDigits[(82611+44030Sqrt[2])/233^2,10,120][[1]] (* Harvey P. Dale, Feb 25 2014 *)
  • PARI
    (82611+44030*sqrt(2))/233^2 \\ G. C. Greubel, Mar 29 2018
    

Formula

(82611+44030*sqrt(2))/233^2 = (370+119*sqrt(2))/(370-119*sqrt(2))
= (3+2*sqrt(2))*(22-3*sqrt(2))^2/(22+3*sqrt(2))^2.

A157350 Decimal expansion of (130803 + 73738*sqrt(2))/281^2.

Original entry on oeis.org

2, 9, 7, 7, 2, 2, 0, 1, 4, 2, 3, 7, 7, 4, 6, 8, 4, 0, 4, 7, 6, 3, 6, 0, 3, 8, 4, 4, 2, 4, 9, 3, 7, 2, 6, 8, 9, 2, 7, 1, 5, 4, 5, 0, 0, 0, 0, 1, 9, 5, 7, 1, 6, 4, 9, 5, 4, 7, 2, 7, 0, 3, 0, 4, 5, 8, 0, 2, 4, 3, 8, 1, 0, 1, 9, 5, 3, 9, 8, 3, 4, 6, 4, 0, 8, 3, 5, 1, 9, 2, 0, 6, 4, 7, 5, 5, 5, 5, 5, 6, 4, 1, 8, 1, 6
Offset: 1

Views

Author

Klaus Brockhaus, Apr 12 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (130803+73738*sqrt(2))/281^2 for n mod 3 = 0, b = A129626.
lim_{n -> infinity} b(n)/b(n-1) = (130803+73738*sqrt(2))/281^2 for n mod 3 = 1, b = A157348.

Examples

			(130803 + 73738*sqrt(2))/281^2 = 2.97722014237746840476...
		

Crossrefs

Cf. A129626, A157348, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A157349 (decimal expansion of (297+68*sqrt(2))/281).

Programs

  • Magma
    (130803+73738*Sqrt(2))/281^2 // G. C. Greubel, Feb 01 2018
  • Mathematica
    RealDigits[(130803 + 73738*Sqrt[2])/281^2, 10, 100][[1]] (* G. C. Greubel, Feb 01 2018 *)
  • PARI
    (130803+73738*sqrt(2))/281^2 \\ G. C. Greubel, Feb 01 2018
    

Formula

(130803 + 73738*sqrt(2))/281^2 = (458 + 161*sqrt(2))/(458 - 161*sqrt(2)) = (3 + 2*sqrt(2))*(17 - 2*sqrt(2))^2/(17 + 2*sqrt(2))^2.

A157469 Positive numbers y such that y^2 is of the form x^2 + (x+97)^2 with integer x.

Original entry on oeis.org

85, 97, 113, 397, 485, 593, 2297, 2813, 3445, 13385, 16393, 20077, 78013, 95545, 117017, 454693, 556877, 682025, 2650145, 3245717, 3975133, 15446177, 18917425, 23168773, 90026917, 110258833, 135037505, 524715325, 642635573, 787056257
Offset: 1

Views

Author

Klaus Brockhaus, Mar 12 2009

Keywords

Comments

(-13,a(1)) and (A129836(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2 + (x+97)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (99+14*sqrt(2))/97 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (19491+12070*sqrt(2))/97^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-13, a(1)) = (-13, 85) is a solution: (-13)^2+(-13+97)^2 = 169+7056 = 7225 = 85^2.
(A129836(1), a(2)) = (0, 97) is a solution: 0^2+(0+97)^2 = 9409 = 97^2.
(A129836(3), a(4)) = (228, 397) is a solution: 228^2+(228+97)^2 = 51984+105625 = 157609 = 397^2.
		

Crossrefs

Cf. A129836, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157470 (decimal expansion of (99+14*sqrt(2))/97), A157471 (decimal expansion of (19491+12070*sqrt(2))/97^2).

Programs

  • Magma
    I:=[85,97,113,397,485,593]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..50]]; // G. C. Greubel, Mar 31 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{85,97,113,397,485,593},30] (* Harvey P. Dale, Apr 04 2013 *)
  • PARI
    {forstep(n=-20, 800000000, [3, 1], if(issquare(2*n^2+194*n+9409, &k), print1(k, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=85, a(2)=97, a(3)=113, a(4)=397, a(5)=485, a(6)=593.
G.f.: (1-x)*(85 + 182*x + 295*x^2 + 182*x^3 + 85*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 97*A001653(k) for k >= 1.

A157471 Decimal expansion of (19491+12070*sqrt(2))/97^2.

Original entry on oeis.org

3, 8, 8, 5, 7, 0, 0, 6, 7, 9, 9, 7, 0, 5, 8, 7, 4, 4, 1, 7, 0, 8, 6, 1, 7, 5, 8, 9, 6, 7, 0, 6, 4, 0, 4, 3, 0, 2, 6, 2, 0, 8, 3, 0, 6, 2, 5, 7, 8, 3, 5, 7, 2, 3, 7, 0, 3, 2, 8, 9, 6, 6, 3, 4, 8, 7, 5, 9, 8, 4, 8, 0, 3, 3, 8, 3, 7, 4, 2, 3, 6, 9, 9, 5, 6, 8, 6, 8, 6, 9, 3, 7, 3, 3, 0, 8, 8, 9, 3, 4, 3, 0, 8, 8, 1
Offset: 1

Views

Author

Klaus Brockhaus, Mar 12 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (19491+12070*sqrt(2))/97^2 for n mod 3 = 0, b = A129836.
lim_{n -> infinity} b(n)/b(n-1) = (19491+12070*sqrt(2))/97^2 for n mod 3 = 1, b = A157469.

Examples

			(19491+12070*sqrt(2))/97^2 = 3.88570067997058744170...
		

Crossrefs

Cf. A129836, A157469, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A157470 (decimal expansion of (99+14*sqrt(2))/97).

Programs

  • Magma
    (19491+12070*Sqrt(2))/97^2; // G. C. Greubel, Mar 30 2018
  • Maple
    with(MmaTranslator[Mma]): Digits:=100:
    RealDigits(evalf((19491+12070*sqrt(2))/97^2))[1]; # Muniru A Asiru, Mar 31 2018
  • Mathematica
    RealDigits[(19491+12070*Sqrt[2])/97^2, 10, 100][[1]] (* G. C. Greubel, Mar 30 2018 *)
  • PARI
    (19491+12070*sqrt(2))/97^2 \\ G. C. Greubel, Mar 30 2018
    

Formula

(19491+12070*sqrt(2))/97^2 = (170+71*sqrt(2))/(170-71*sqrt(2))
= (3+2*sqrt(2))*(14-sqrt(2))^2/(14+sqrt(2))^2.

A157646 Positive numbers y such that y^2 is of the form x^2 + (x+31)^2 with integer x.

Original entry on oeis.org

25, 31, 41, 109, 155, 221, 629, 899, 1285, 3665, 5239, 7489, 21361, 30535, 43649, 124501, 177971, 254405, 725645, 1037291, 1482781, 4229369, 6045775, 8642281, 24650569, 35237359, 50370905, 143674045, 205378379, 293583149, 837393701
Offset: 1

Views

Author

Klaus Brockhaus, Mar 11 2009

Keywords

Comments

(-7,a(1)) and (A118674(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+31)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (33+8*sqrt(2))/31 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (1539+850*sqrt(2))/31^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-7, a(1)) = (-7, 25) is a solution: (-7)^2+(-7+31)^2 = 49+576 = 625 = 25^2.
(A118674(1), a(2)) = (0, 31) is a solution: 0^2+(0+31)^2 = 961 = 31^2.
(A118674(3), a(4)) = (60, 109) is a solution: 60^2+(60+31)^2 = 3600+8281 = 11881 = 109^2.
		

Crossrefs

Cf. A118674, A001653, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A157647 (decimal expansion of (33+8*sqrt(2))/31), A157648 (decimal expansion of (1539+850*sqrt(2))/31^2).

Programs

  • Magma
    I:=[25,31,41,109,155,221]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..50]]; // G. C. Greubel, Mar 31 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{25,31,41,109,155,221},40] (* Harvey P. Dale, Oct 12 2017 *)
  • PARI
    {forstep(n=-8, 840000000, [1, 3], if(issquare(2*n^2+62*n+961, &k), print1(k, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=25, a(2)=31, a(3)=41, a(4)=109, a(5)=155, a(6)=221.
G.f.: (1-x)*(25 + 56*x + 97*x^2 + 56*x^3 + 25*x^4)/(1 - 6*x^3 + x^6).
a(3*k-1) = 31*A001653(k) for k >= 1.

A157648 Decimal expansion of (1539+850*sqrt(2))/31^2.

Original entry on oeis.org

2, 8, 5, 2, 3, 2, 2, 0, 8, 9, 5, 0, 7, 9, 4, 0, 4, 6, 9, 8, 0, 3, 7, 8, 2, 9, 5, 0, 6, 5, 3, 7, 3, 9, 1, 9, 5, 4, 0, 5, 0, 1, 6, 7, 4, 7, 2, 1, 1, 6, 6, 0, 6, 2, 6, 6, 3, 9, 1, 0, 2, 7, 8, 5, 9, 4, 3, 9, 3, 6, 1, 1, 5, 1, 8, 5, 0, 0, 6, 2, 2, 5, 8, 3, 0, 2, 0, 7, 4, 9, 6, 5, 4, 3, 6, 9, 9, 6, 2, 2, 0, 8, 6, 1, 2
Offset: 1

Views

Author

Klaus Brockhaus, Mar 11 2009

Keywords

Comments

Limit_{n -> oo} b(n)/b(n-1) = (1539+850*sqrt(2))/31^2 for n mod 3 = 0, b = A118674.
Limit_{n -> oo} b(n)/b(n-1) = (1539+850*sqrt(2))/31^2 for n mod 3 = 1, b = A157646.

Examples

			2.85232208950794046980...
		

Crossrefs

Cf. A118674, A157646, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A157647 (decimal expansion of (33+8*sqrt(2))/31).

Programs

  • Magma
    (1539+850*Sqrt(2))/31^2; // G. C. Greubel, Mar 30 2018
  • Maple
    with(MmaTranslator[Mma]): Digits:=100:
    RealDigits(evalf((1539+850*sqrt(2))/31^2))[1]; # Muniru A Asiru, Mar 31 2018
  • Mathematica
    RealDigits[(1539+850*Sqrt[2])/31^2, 10, 100][[1]] (* G. C. Greubel, Mar 30 2018 *)
  • PARI
    (1539+850*sqrt(2))/31^2 \\ G. C. Greubel, Mar 30 2018
    

Formula

Equals (50+17*sqrt(2))/(50-17*sqrt(2)).
Equals (3+2*sqrt(2))*(8-sqrt(2))^2/(8+sqrt(2))^2.
Previous Showing 71-80 of 138 results. Next