cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 138 results. Next

A159466 Positive numbers y such that y^2 is of the form x^2 + (x+127)^2 with integer x.

Original entry on oeis.org

113, 127, 145, 533, 635, 757, 3085, 3683, 4397, 17977, 21463, 25625, 104777, 125095, 149353, 610685, 729107, 870493, 3559333, 4249547, 5073605, 20745313, 24768175, 29571137, 120912545, 144359503, 172353217, 704729957, 841388843, 1004548165
Offset: 1

Views

Author

Klaus Brockhaus, Apr 13 2009

Keywords

Comments

(-15, a(1)) and (A129992(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2 + (x+127)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (129 + 16*sqrt(2))/127 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (34947 + 21922*sqrt(2))/127^2 for n mod 3 = 1.

Examples

			(-15, a(1)) = (-15, 113) is a solution: (-15)^2 + (-15+127)^2 = 225 + 12544 = 12769 = 113^2.
(A129992(1), a(2)) = (0, 127) is a solution: 0^2 + (0+127)^2 = 16129 = 127^2.
(A129992(3), a(4)) = (308, 533) is a solution: 308^2 + (308+127)^2 = 94864 + 189225 = 284089 = 533^2.
		

Crossrefs

Cf. A129992, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159467 (decimal expansion of (129+16*sqrt(2))/127), A159468 (decimal expansion of (34947+21922*sqrt(2))/127^2).

Programs

  • Magma
    I:=[113,127,145,533,635,757]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Jun 15 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{113,127,145,533,635,757},50] (* Harvey P. Dale, Feb 06 2015 *)
  • PARI
    {forstep(n=-16, 500000000, [1, 3], if(issquare(2*n^2+254*n+16129, &k), print1(k, ",")))}
    

Formula

a(n) = 6*a(n-3) - a(n-6)for n > 6; a(1)=113, a(2)=127, a(3)=145, a(4)=533, a(5)=635, a(6)=757.
G.f.: (1-x)*(113+240*x+385*x^2+240*x^3+113*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 127*A001653(k) for k >= 1.

A159468 Decimal expansion of (34947+21922*sqrt(2))/127^2.

Original entry on oeis.org

4, 0, 8, 8, 8, 7, 0, 3, 4, 0, 0, 2, 9, 9, 4, 5, 4, 1, 8, 8, 0, 0, 3, 3, 6, 0, 5, 3, 8, 2, 3, 8, 5, 7, 7, 2, 6, 9, 7, 6, 5, 2, 3, 4, 5, 7, 8, 7, 1, 7, 4, 9, 9, 9, 4, 4, 3, 1, 0, 9, 7, 6, 0, 1, 6, 0, 1, 6, 3, 9, 1, 2, 1, 6, 3, 4, 7, 1, 4, 5, 2, 0, 7, 8, 1, 0, 8, 9, 6, 8, 4, 8, 8, 6, 2, 6, 4, 4, 0, 3, 0, 9, 3, 6, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 13 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (34947+21922*sqrt(2))/127^2 for n mod 3 = 0, b = A129992.
lim_{n -> infinity} b(n)/b(n-1) = (34947+21922*sqrt(2))/127^2 for n mod 3 = 1, b = A159466.

Examples

			(34947+21922*sqrt(2))/127^2 = 4.08887034002994541880...
		

Crossrefs

Cf. A129992, A159466, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A159467 (decimal expansion of (129+16*sqrt(2))/127).

Programs

  • Magma
    (34947 + 21922*Sqrt(2))/127^2; // G. C. Greubel, Mar 30 2018
  • Maple
    with(MmaTranslator[Mma]): Digits:=100:
    RealDigits(evalf((34947+21922*sqrt(2))/127^2))[1]; # Muniru A Asiru, Mar 31 2018
  • Mathematica
    RealDigits[(34947+21922*Sqrt[2])/127^2,10,120][[1]] (* Harvey P. Dale, May 11 2012 *)
  • PARI
    (34947+21922*sqrt(2))/127^2 \\ G. C. Greubel, Mar 30 2018
    

Formula

Equals (226+97*sqrt(2))/(226-97*sqrt(2)).
Equals (3+2*sqrt(2))*(16-sqrt(2))^2/(16+sqrt(2))^2.

A159589 Positive numbers y such that y^2 is of the form x^2+(x+449)^2 with integer x.

Original entry on oeis.org

421, 449, 481, 2045, 2245, 2465, 11849, 13021, 14309, 69049, 75881, 83389, 402445, 442265, 486025, 2345621, 2577709, 2832761, 13671281, 15023989, 16510541, 79682065, 87566225, 96230485, 464421109, 510373361, 560872369, 2706844589
Offset: 1

Views

Author

Klaus Brockhaus, Apr 18 2009

Keywords

Comments

(-29,a(1)) and (A130004(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+449)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (451+30*sqrt(2))/449 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (507363+329222*sqrt(2))/449^2 for n mod 3 = 1.

Examples

			(-29, a(1)) = (-29, 421) is a solution: (-29)^2+(-29+449)^2 = 841+176400 = 177241 = 421^2.
(A130004(1), a(2)) = (0, 449) is a solution: 0^2+(0+449)^2 = 201601 = 449^2.
(A130004(3), a(4)) = (1204, 2045) is a solution: 1204^2+(1204+449)^2 = 1449616+2732409 = 4182025 = 2045^2.
		

Crossrefs

Cf. A130004, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159590 (decimal expansion of (451+30*sqrt(2))/449), A159591 (decimal expansion of (507363+329222*sqrt(2))/449^2).

Programs

  • Magma
    I:=[421,449,481,2045,2245,2465]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 08 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {421,449,481,2045,2245,2465}, 50] (* G. C. Greubel, May 08 2018 *)
  • PARI
    {forstep(n=-32, 50000000, [3, 1], if(issquare(2*n^2+898*n+201601, &k), print1(k, ",")))}
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(421+870*x+1351*x^2+870*x^3+421*x^4)/(1- 6*x^3+x^6)) \\ G. C. Greubel, May 08 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=421, a(2)=449, a(3)=481, a(4)=2045, a(5)=2245, a(6)=2465.
G.f.: (1-x)*(421+870*x+1351*x^2+870*x^3+421*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 449*A001653(k) for k >= 1.

A159690 Positive numbers y such that y^2 is of the form x^2+(x+881)^2 with integer x.

Original entry on oeis.org

841, 881, 925, 4121, 4405, 4709, 23885, 25549, 27329, 139189, 148889, 159265, 811249, 867785, 928261, 4728305, 5057821, 5410301, 27558581, 29479141, 31533545, 160623181, 171817025, 183790969, 936180505, 1001423009, 1071212269
Offset: 1

Views

Author

Klaus Brockhaus, Apr 21 2009

Keywords

Comments

(-41,a(1)) and (A130014(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+881)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (883+42*sqrt(2))/881 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (2052963+1343918*sqrt(2))/881^2 for n mod 3 = 1.

Examples

			(-41, a(1)) = (-41, 841) is a solution: (-41)^2+(-41+881)^2 = 1681+705600 = 707281 = 841^2.
(A130014(1), a(2)) = (0, 881) is a solution: 0^2+(0+881)^2 = 776161 = 881^2.
(A130014(3), a(4)) = (2440, 4121) is a solution: 2440^2+(2440+881)^2 = 5953600+11029041 = 16982641 = 4121^2.
		

Crossrefs

Cf. A130014, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159691 (decimal expansion of (883+42*sqrt(2))/881), A159692 (decimal expansion of (2052963+1343918*sqrt(2))/881^2).

Programs

  • Magma
    I:=[841, 881, 925, 4121, 4405, 4709]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Jun 02 2018
  • Mathematica
    CoefficientList[Series[(1 - x)*(841 + 1722*x + 2647*x^2 + 1722*x^3 + 841*x^4)/(1 - 6*x^3 + x^6), {x,0,50}], x] (* or *) LinearRecurrence[{0, 0,6,0,0,-1}, {841, 881, 925, 4121, 4405, 4709}, 30] (* G. C. Greubel, Jun 02 2018 *)
  • PARI
    {forstep(n=-44, 10000000, [3, 1], if(issquare(2*n^2+1762*n+776161, &k), print1(k, ",")))}
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=841, a(2)=881, a(3)=925, a(4)=4121, a(5)=4405, a(6)=4709.
G.f.: (1-x)*(841+1722*x+2647*x^2+1722*x^3+841*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 881*A001653(k) for k >= 1.

A159701 Positive numbers y such that y^2 is of the form x^2+(x+967)^2 with integer x.

Original entry on oeis.org

925, 967, 1013, 4537, 4835, 5153, 26297, 28043, 29905, 153245, 163423, 174277, 893173, 952495, 1015757, 5205793, 5551547, 5920265, 30341585, 32356787, 34505833, 176843717, 188589175, 201114733, 1030720717, 1099178263
Offset: 1

Views

Author

Klaus Brockhaus, Apr 21 2009

Keywords

Comments

(-43, a(1)) and (A130017(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+967)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (969+44*sqrt(2))/967 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (2487411+1629850*sqrt(2))/967^2 for n mod 3 = 1.

Examples

			(-43, a(1)) = (-43, 925) is a solution: (-43)^2+(-43+967)^2 = 1849+853776 = 855625 = 925^2.
(A130017(1), a(2)) = (0, 967) is a solution: 0^2+(0+967)^2 = 935089 = 967^2.
(A130017(3), a(4)) = (2688, 4537) is a solution: 2688^2+(2688+967)^2 = 7225344+13359025 = 20584369 = 4537^2.
		

Crossrefs

Cf. A130017, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159702 (decimal expansion of (969+44*sqrt(2))/967), A159703 (decimal expansion of (2487411+1629850*sqrt(2))/967^2).

Programs

  • Magma
    I:=[925,967,1013,4537,4835,5153]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 22 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {925,967,1013,4537,4835,5153}, 40] (* G. C. Greubel, May 22 2018 *)
  • PARI
    {forstep(n=-44, 10000000, [1, 3], if(issquare(2*n^2+1934*n+935089, &k), print1(k, ",")))};
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(925+1892*x+2905*x^2+1892*x^3+925*x^4)/( 1-6*x^3+x^6)) \\ G. C. Greubel, May 22 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=925, a(2)=967, a(3)=1013, a(4)=4537, a(5)=4835, a(6)=5153.
G.f.: (1-x)*(925+1892*x+2905*x^2+1892*x^3+925*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 967*A001653(k) for k >= 1.

A159750 Positive numbers y such that y^2 is of the form x^2+(x+47)^2 with integer x.

Original entry on oeis.org

37, 47, 65, 157, 235, 353, 905, 1363, 2053, 5273, 7943, 11965, 30733, 46295, 69737, 179125, 269827, 406457, 1044017, 1572667, 2369005, 6084977, 9166175, 13807573, 35465845, 53424383, 80476433, 206710093, 311380123, 469051025, 1204794713
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

(-12, a(1)) and (A118675(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+47)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (51+14*sqrt(2))/47 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3267+1702*sqrt(2))/47^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p= m^2 -2 a prime number in A028871, m>=2, the x values are given by the sequence defined by: a(n)= 6*a(n-3) -a(n-6) +2*p with a(1)=0, a(2)= 2*m +2, a(3)= 3*m^2 -10*m +8, a(4)= 3*p, a(5)= 3*m^2 +10*m +8, a(6)= 20*m^2 -58*m +42. Y values are given by the sequence defined by: b(n)= 6*b(n-3) -b(n-6) with b(1)=p, b(2)= m^2 +2*m +2, b(3)= 5*m^2 -14*m +10, b(4)= 5*p, b(5)= 5*m^2 +14*m +10, b(6)= 29*m^2 -82*m +58. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-12, a(1)) = (-12, 37) is a solution: (-12)^2+(-12+47)^2 = 144+1225 = 1369 = 37^2.
(A118675(1), a(2)) = (0, 47) is a solution: 0^2+(0+47)^2 = 2209 = 47^2.
(A118675(3), a(4)) = (85, 157) is a solution: 85^2+(85+47)^2 = 7225+17424 = 24649 = 157^2.
		

Crossrefs

Cf. A118675, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159751 (decimal expansion of (51+14*sqrt(2))/47), A159752 (decimal expansion of (3267+1702*sqrt(2))/47^2).

Programs

  • Magma
    I:=[37,47,65,157,235,353]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 22 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {37,47,65,157,235,353}, 50] (* G. C. Greubel, May 22 2018 *)
  • PARI
    {forstep(n=-12, 100000000, [1, 3], if(issquare(2*n^2+94*n+2209, &k), print1(k, ",")))};
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(37+84*x+149*x^2+84*x^3+37*x^4)/(1 -6*x^3 +x^6)) \\ G. C. Greubel, May 22 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=37, a(2)=47, a(3)=65, a(4)=157, a(5)=235, a(6)=353.
G.f.: (1-x)*(37+84*x+149*x^2+84*x^3+37*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 47*A001653(k) for k >= 1.

A159758 Positive numbers y such that y^2 is of the form x^2+(x+79)^2 with integer x.

Original entry on oeis.org

65, 79, 101, 289, 395, 541, 1669, 2291, 3145, 9725, 13351, 18329, 56681, 77815, 106829, 330361, 453539, 622645, 1925485, 2643419, 3629041, 11222549, 15406975, 21151601, 65409809, 89798431, 123280565, 381236305, 523383611, 718531789
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

(-16, a(1)) and (A118676(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+79)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (83+18*sqrt(2))/79 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (10659+6110*sqrt(2))/79^2 for n mod 3 = 1.
For the generic case x^2 + (x+p)^2 = y^2 with p = m^2 - 2 a prime number in A028871, m >= 5, the x values are given by the sequence defined by a(n) = 6*a(n-3) - a(n-6) + 2*p with a(1)=0, a(2) = 2*m + 2, a(3) = 3*m^2 - 10*m + 8, a(4) = 3*p, a(5) = 3*m^2 + 10*m + 8, a(6) = 20*m^2 - 58*m + 42. Y values are given by the sequence defined by b(n) = 6*b(n-3) - b(n-6) with b(1)=p, b(2) = m^2 + 2*m + 2, b(3) = 5*m^2 - 14*m + 10, b(4)= 5*p, b(5) = 5*m^2 + 14*m + 10, b(6) = 29*m^2 - 82*m + 58. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-16, a(1)) = (-16, 65) is a solution: (-16)^2 + (-16+79)^2 = 256+3969 = 4225 = 65^2.
(A118676(1), a(2)) = (0, 79) is a solution: 0^2 + (0+79)^2 = 6241 = 79^2.
(A118676(3), a(4)) = (161, 289) is a solution: 161^2 + (161+79)^2 = 25921 + 57600 = 83521 = 289^2.
		

Crossrefs

Cf. A118676, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159759 (decimal expansion of (83+18*sqrt(2))/79), A159760 (decimal expansion of (10659+6110*sqrt(2))/79^2).

Programs

  • Magma
    I:=[65,79,101,289,395,541]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 22 2018
  • Mathematica
    RecurrenceTable[{a[1]==65,a[2]==79,a[3]==101,a[4]==289,a[5]==395, a[6]== 541, a[n]==6a[n-3]-a[n-6]},a[n],{n,30}] (* or *) LinearRecurrence[ {0,0,6,0,0,-1},{65,79,101,289,395,541},30] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    {forstep(n=-16, 10000000, [1, 3], if(issquare(2*n^2+158*n+6241, &k), print1(k, ",")))}
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=65, a(2)=79, a(3)=101, a(4)=289, a(5)=395, a(6)=541.
G.f.: (1-x)*(65+144*x+245*x^2+144*x^3+65*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 79*A001653(k) for k >= 1.

A159777 Positive numbers y such that y^2 is of the form x^2+(x+167)^2 with integer x.

Original entry on oeis.org

145, 167, 197, 673, 835, 1037, 3893, 4843, 6025, 22685, 28223, 35113, 132217, 164495, 204653, 770617, 958747, 1192805, 4491485, 5587987, 6952177, 26178293, 32569175, 40520257, 152578273, 189827063, 236169365, 889291345, 1106393203
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

(-24, a(1)) and (A130608(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+167)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (171+26*sqrt(2))/167 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (56211+34510*sqrt(2))/167^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2 - 2 a prime number in A028871, m >= 5, the x values are given by the sequence defined by: a(n) = 6*a(n-3) - a(n-6) + 2*p with a(1)=0, a(2) = 2*m + 2, a(3) = 3*m^2 - 10*m + 8, a(4) = 3*p, a(5) = 3*m^2 + 10*m + 8, a(6) = 20*m^2 - 58*m + 42. Y values are given by the sequence defined by: b(n) = 6*b(n-3) - b(n-6) with b(1) = p, b(2) = m^2 + 2*m + 2, b(3) = 5*m^2 - 14*m + 10, b(4) = 5*p, b(5) = 5*m^2 + 14*m + 10, b(6) = 29*m^2 - 82*m + 58. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-24, a(1)) = (-24, 145) is a solution: (-24)^2 + (-24+167)^2 = 576 + 20449 = 21025 = 145^2.
(A130608(1), a(2)) = (0, 167) is a solution: 0^2 + (0+167)^2 = 27889 = 167^2.
(A130608(3), a(4)) = (385, 673) is a solution: 385^2 + (385+167)^2 = 148225 + 304704 = 452929 = 673^2.
		

Crossrefs

Cf. A130608, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159778 (decimal expansion of (171+26*sqrt(2))/167), A159779 (decimal expansion of (56211+34510*sqrt(2))/167^2).

Programs

  • Magma
    I:=[145,167,197,673,835,1037]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 21 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {145,167,197,673,835,1037}, 50] (* G. C. Greubel, May 21 2018 *)
  • PARI
    {forstep(n=-24, 10000000, [1, 3], if(issquare(2*n^2+334*n+27889, &k), print1(k, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=145, a(2)=167, a(3)=197, a(4)=673, a(5)=835, a(6)=1037.
G.f.: (1-x)*(145+312*x+509*x^2+312*x^3+145*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 167*A001653(k) for k >= 1.

A159809 Positive numbers y such that y^2 is of the form x^2+(x+223)^2 with integer x.

Original entry on oeis.org

197, 223, 257, 925, 1115, 1345, 5353, 6467, 7813, 31193, 37687, 45533, 181805, 219655, 265385, 1059637, 1280243, 1546777, 6176017, 7461803, 9015277, 35996465, 43490575, 52544885, 209802773, 253481647, 306254033, 1222820173, 1477399307
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

(-28, a(1)) and (A130609(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+223)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (227+30*sqrt(2))/223 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (105507+65798*sqrt(2))/223^2 for n mod 3 = 1.
For the generic case x^2 + (x+p)^2 = y^2 with p = m^2 - 2 a prime number in A028871, m >= 5, the x values are given by the sequence defined by a(n) = 6*a(n-3) - a(n-6) + 2*p with a(1)=0, a(2) = 2*m + 2, a(3) = 3*m^2 - 10*m + 8, a(4) = 3*p, a(5) = 3*m^2 + 10*m + 8, a(6) = 20*m^2 - 58*m + 42. Y values are given by the sequence defined by b(n) = 6*b(n-3) - b(n-6) with b(1) = p, b(2) = m^2 + 2*m + 2, b(3) = 5*m^2 - 14*m + 10, b(4) = 5*p, b(5) = 5m^2 + 14*m + 10, b(6) = 29*m^2 - 82*m + 58. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-28, a(1)) = (-28, 197) is a solution: (-28)^2 + (-28+223)^2 = 784 + 38025 = 38809 = 197^2.
(A130609(1), a(2)) = (0, 223) is a solution: 0^2 + (0+223)^2 = 49729 = 223^2.
(A130609(3), a(4)) = (533, 925) is a solution: 533^2 + (533+223)^2 = 284089 + 571536 = 855625 = 925^2.
		

Crossrefs

Cf. A130609, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A130610 (decimal expansion of (227+30*sqrt(2))/223), A130611 (decimal expansion of (105507+65798*sqrt(2))/223^2).

Programs

  • Magma
    I:=[197,223,257,925,1115,1345]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 21 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {197,223,257,925,1115,1345}, 50] (* G. C. Greubel, May 21 2018 *)
  • PARI
    {forstep(n=-28, 10000000, [1, 3], if(issquare(2*n^2+446*n+49729, &k), print1(k, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=197, a(2)=223, a(3)=257, a(4)=925, a(5)=1115, a(6)=1345.
G.f.: (1-x)*(197+420*x+677*x^2+420*x^3+197*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 223*A001653(k) for k >= 1.

A159844 Positive numbers y such that y^2 is of the form x^2+(x+359)^2 with integer x.

Original entry on oeis.org

325, 359, 401, 1549, 1795, 2081, 8969, 10411, 12085, 52265, 60671, 70429, 304621, 353615, 410489, 1775461, 2061019, 2392505, 10348145, 12012499, 13944541, 60313409, 70013975, 81274741, 351532309, 408071351, 473703905, 2048880445
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

(-36, a(1)) and (A130610(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+359)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (363+38*sqrt(2))/359 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (293619+186550*sqrt(2))/359^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=m^2-2 a prime number in A028871, m>=5, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+2, a(3)=3m^2-10m+8, a(4)=3p, a(5)=3m^2+10m+8, a(6)=20m^2-58m+42.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=m^2+2m+2, b(3)=5m^2-14m+10, b(4)=5p, b(5)=5m^2+14m+10, b(6)=29m^2-82m+58. [Mohamed Bouhamida, Sep 09 2009]

Examples

			(-36, a(1)) = (-36, 325) is a solution: (-36)^2+(-36+359)^2 = 1296+104329 = 105625 = 325^2.
(A130610(1), a(2)) = (0, 359) is a solution: 0^2+(0+359)^2 = 128881 = 359^2.
(A130610(3), a(4)) = (901, 1549) is a solution: 901^2+(901+359)^2 = 811801+1587600 = 2399401 = 1549^2.
		

Crossrefs

Cf. A130610, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159845 (decimal expansion of (363+38*sqrt(2))/359), A159846 (decimal expansion of (293619+186550*sqrt(2))/359^2).

Programs

  • Magma
    I:=[325, 359, 401, 1549, 1795, 2081]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 19 2018
  • Mathematica
    t={325,359,401,1549,1795,2081}; Do[AppendTo[t, 6*t[[-3]]-t[[-6]]], {25}]; t
    CoefficientList[Series[(325+359 x+401 x^2-401 x^3-359 x^4-325 x^5)/(1-6 x^3+x^6),{x,0,30}],x]  (* Harvey P. Dale, Feb 16 2011 *)
    LinearRecurrence[{0,0,6,0,0,-1}, {325, 359, 401, 1549, 1795, 2081}, 50] (* G. C. Greubel, May 19 2018 *)
  • PARI
    {forstep(n=-36, 10000000, [1, 3], if(issquare(2*n^2+718*n+128881, &k), print1(k, ",")))}
    
  • PARI
    V=[]; v=[[-323,-325], [-323,325], [0,-359], [-359,359], [-399,-401], [399,401]]; for(n=1,100,u=[]; for(i=1,#v,if(v[i][2]>0, u=concat(u,v[i][2])); t=3*v[i][1]+2*v[i][2]+359; v[i][2]=4*v[i][1]+3*v[i][2]+718; v[i][1]=t); V=concat(V,u)); vecsort(V,,8) \\ Charles R Greathouse IV, Feb 14 2011
    

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=325, a(2)=359, a(3)=401, a(4)=1549, a(5)=1795, a(6)=2081.
G.f.: (1-x)*(325+684*x+1085*x^2+684*x^3+325*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 359*A001653(k) for k >= 1.
Previous Showing 81-90 of 138 results. Next