A159890
Positive numbers y such that y^2 is of the form x^2+(x+439)^2 with integer x.
Original entry on oeis.org
401, 439, 485, 1921, 2195, 2509, 11125, 12731, 14569, 64829, 74191, 84905, 377849, 432415, 494861, 2202265, 2520299, 2884261, 12835741, 14689379, 16810705, 74812181, 85615975, 97979969, 436037345, 499006471, 571069109, 2541411889
Offset: 1
(-40, a(1)) = (-40, 401) is a solution: (-40)^2+(-40+439)^2 = 1600+159201 = 160801 = 401^2.
(A130645(1), a(2)) = (0, 439) is a solution: 0^2+(0+439)^2 = 192721 = 439^2.
(A130645(3), a(4)) = (1121, 1921) is a solution: 1121^2+(1121+439)^2 = 1256641+2433600 = 3690241 = 1921^2.
Cf.
A130645,
A001653,
A156035 (decimal expansion of 3+2*sqrt(2)),
A159891 (decimal expansion of (443+42*sqrt(2))/439),
A159892 (decimal expansion of (450483+287918*sqrt(2))/439^2).
-
I:=[401,439,485,1921,2195,2509]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 17 2018
-
LinearRecurrence[{0,0,6,0,0,-1}, {401,439,485,1921,2195,2509}, 50] (* G. C. Greubel, May 17 2018 *)
-
{forstep(n=-40, 10000000, [1, 3], if(issquare(2*n^2+878*n+192721, &k), print1(k, ",")))}
A159893
Positive numbers y such that y^2 is of the form x^2+(x+727)^2 with integer x.
Original entry on oeis.org
677, 727, 785, 3277, 3635, 4033, 18985, 21083, 23413, 110633, 122863, 136445, 644813, 716095, 795257, 3758245, 4173707, 4635097, 21904657, 24326147, 27015325, 127669697, 141783175, 157456853, 744113525, 826372903, 917725793
Offset: 1
(-52, a(1)) = (-52, 677) is a solution: (-52)^2+(-52+727)^2 = 2704+455625 = 458329 = 677^2.
(A130646(1), a(2)) = (0, 727) is a solution: 0^2+(0+727)^2 = 528529 = 727^2.
(A130646(3), a(4)) = (1925, 3277) is a solution: 1925^2+(1925+727)^2 = 3705625+7033104 = 10738729 = 3277^2.
Cf.
A130646,
A001653,
A156035 (decimal expansion of 3+2*sqrt(2)),
A159894 (decimal expansion of (731+54*sqrt(2))/727),
A159895 (decimal expansion of (1304787+843542*sqrt(2))/727^2).
-
I:=[677,727,785,3277,3635,4033]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 17 2018
-
LinearRecurrence[{0,0,6,0,0,-1}, {677,727,785,3277,3635,4033}, 50] (* G. C. Greubel, May 17 2018 *)
-
{forstep(n=-52, 10000000, [1, 3], if(issquare(2*n^2+1454*n+528529, &k), print1(k, ",")))}
A159896
Positive numbers y such that y^2 is of the form x^2+(x+839)^2 with integer x.
Original entry on oeis.org
785, 839, 901, 3809, 4195, 4621, 22069, 24331, 26825, 128605, 141791, 156329, 749561, 826415, 911149, 4368761, 4816699, 5310565, 25463005, 28073779, 30952241, 148409269, 163625975, 180402881, 864992609, 953682071, 1051465045
Offset: 1
(-56, a(1)) = (-56, 785) is a solution: (-56)^2+(-56+839)^2 = 3136+613089 = 616225 = 785^2.
(A130647(1), a(2)) = (0, 839) is a solution: 0^2+(0+839)^2 = 703921 = 839^2.
(A130647(3), a(4)) = (2241, 3809) is a solution: 2241^2+(2241+839)^2 = 5022081+9486400 = 14508481 = 3809^2.
Cf.
A130647,
A001653,
A156035 (decimal expansion of 3+2*sqrt(2)),
A159897 (decimal expansion of (843+58*sqrt(2))/839),
A159898 (decimal expansion of (1760979+1141390*sqrt(2))/839^2).
-
I:=[785,839,901,3809,4195,4621]; [n le 6 select I[n] else 6*Self(n-3) -Self(n-6): n in [1..30]]; // G. C. Greubel, May 17 2018
-
LinearRecurrence[{0,0,6,0,0,-1}, {785,839,901,3809,4195,4621}, 30] (* Harvey P. Dale, Mar 03 2013 *)
-
{forstep(n=-56, 10000000, [1, 3], if(issquare(2*n^2+1678*n+703921, &k), print1(k, ",")))}
-
is(n,p=839)=for(m=sqrtint((max(n,984)^2-p^2)\2)-p\2,n,m^2+(m+p)^2A159896(n)=(matrix(6,6,i,j,if(i<6,i+1==j,j==4,6,j==1,-1))^n*[785,839,901,3809,4195,4621]~)[1] \\ M. F. Hasler, May 17 2018
A160041
Positive numbers y such that y^2 is of the form x^2+(x+73)^2 with integer x.
Original entry on oeis.org
53, 73, 125, 193, 365, 697, 1105, 2117, 4057, 6437, 12337, 23645, 37517, 71905, 137813, 218665, 419093, 803233, 1274473, 2442653, 4681585, 7428173, 14236825, 27286277, 43294565, 82978297, 159036077, 252339217, 483632957, 926930185
Offset: 1
(-28, a(1)) = (-28, 53) is a solution: (-28)^2+(-28+73)^2 = 784+2025 = 2809 = 53^2.
(A129289(1), a(2)) = (0, 73) is a solution: 0^2+(0+73)^2 = 5329 = 73^2.
(A129289(3), a(4)) = (95, 193) is a solution: 95^2+(95+73)^2 = 9025+28224 = 37249 = 193^2.
-
I:=[53,73,125,193,365,697]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 21 2018
-
LinearRecurrence[{0,0,6,0,0,-1}, {53,73,125,193,365,697}, 50] (* G. C. Greubel, Apr 21 2018 *)
-
{forstep(n=-28, 10000000, [3, 1], if(issquare(2*n^2+146*n+5329, &k), print1(k, ",")))}
-
x='x+O('x^30); Vec((1-x)*(53 +126*x +251*x^2 +126*x^3 +53*x^4)/(1 -6*x^3+x^6)) \\ G. C. Greubel, Apr 21 2018
A160055
Positive numbers y such that y^2 is of the form x^2+(x+89)^2 with integer x.
Original entry on oeis.org
65, 89, 149, 241, 445, 829, 1381, 2581, 4825, 8045, 15041, 28121, 46889, 87665, 163901, 273289, 510949, 955285, 1592845, 2978029, 5567809, 9283781, 17357225, 32451569, 54109841, 101165321, 189141605, 315375265, 589634701, 1102398061
Offset: 1
(-33, a(1)) = (-33, 65) is a solution: (-33)^2+(-33+89)^2 = 1089+3136 = 4225 = 65^2.
(A129298(1), a(2)) = (0, 89) is a solution: 0^2+(0+89)^2 = 7921 = 89^2.
(A129298(3), a(4)) = (120, 241) is a solution: 120^2+(120+89)^2 = 14400+43681 = 58081 = 241^2.
-
LinearRecurrence[{0,0,6,0,0,-1},{65,89,149,241,445,829},40] (* Harvey P. Dale, Feb 04 2015 *)
-
{forstep(n=-36, 10000000, [3, 1], if(issquare(2*n^2+178*n+7921, &k), print1(k, ",")))}
A160090
Positive numbers y such that y^2 is of the form x^2 + (x + 569)^2 with integer x.
Original entry on oeis.org
485, 569, 689, 2221, 2845, 3649, 12841, 16501, 21205, 74825, 96161, 123581, 436109, 560465, 720281, 2541829, 3266629, 4198105, 14814865, 19039309, 24468349, 86347361, 110969225, 142611989, 503269301, 646776041, 831203585, 2933268445
Offset: 1
(-93, a(1)) = (-93, 485) is a solution: (-93)^2+(-93+569)^2 = 8649+226576 = 235225 = 485^2.
(A101152(1), a(2)) = (0, 569) is a solution: 0^2+(0+569)^2 = 323761= 569^2.
(A101152(3), a(4)) = (1260, 2221) is a solution: 1260^2+(1260+569)^2 = 1587600+3345241 = 4932841 = 2221^2.
Cf.
A101152,
A001653,
A156035 (decimal expansion of 3+2*sqrt(2)),
A160091 (decimal expansion of (587+102*sqrt(2))/569),
A160092 (decimal expansion of (617139+371510*sqrt(2))/569^2).
-
I:=[485,569,689,2221,2845,3649]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 21 2018
-
LinearRecurrence[{0,0,6,0,0,-1}, {485,569,689,2221,2845,3649}, 50] (* G. C. Greubel, Apr 21 2018 *)
-
{forstep(n=-96, 10000000, [3, 1], if(issquare(2*n^2+1138*n+323761, &k), print1(k, ",")))}
-
x='x+O('x^30); Vec((1-x)*(485 +1054*x +1743*x^2 +1054*x^3 +485*x^4)/(1-6*x^3+x^6)) \\ G. C. Greubel, Apr 21 2018
A160098
Positive numbers y such that y^2 is of the form x^2+(x+601)^2 with integer x.
Original entry on oeis.org
425, 601, 1261, 1289, 3005, 7141, 7309, 17429, 41585, 42565, 101569, 242369, 248081, 591985, 1412629, 1445921, 3450341, 8233405, 8427445, 20110061, 47987801, 49118749, 117210025, 279693401, 286285049, 683150089, 1630172605
Offset: 1
(-297, a(1)) = (-297, 425) is a solution: (-297)^2+(-297+601)^2 = 88209+92416 = 180625 = 425^2.
(A111258(1), a(2)) = (0, 601) is a solution: 0^2+(0+601)^2 = 361201 = 601^2.
(A111258(3), a(4)) = (560, 1289) is a solution: 560^2+(560+601)^2 = 313600+1347921 = 1661521 = 1289^2.
Cf.
A111258,
A001653,
A156035 (decimal expansion of 3+2*sqrt(2)),
A160099 (decimal expansion of (843+418*sqrt(2))/601),
A160100 (decimal expansion of (361299+5950*sqrt(2))/601^2).
-
I:=[425,601,1261,1289,3005,7141]; [n le 6 select I[n] else 5*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 22 2018
-
LinearRecurrence[{0,0,6,0,0,-1}, {425,601,1261,1289,3005,7141}, 50] (* G. C. Greubel, Apr 22 2018 *)
-
{forstep(n=-300, 10000000, [3, 1], if(issquare(2*n^2+1202*n+361201, &k), print1(k, ",")))}
-
x='x+O('x^30); Vec((1-x)*(425 +1026*x +2287*x^2 +1026*x^3 +425*x^4 )/(1-6*x^3+x^6)) \\ G. C. Greubel, Apr 22 2018
A160176
Positive numbers y such that y^2 is of the form x^2+(x+617)^2 with integer x.
Original entry on oeis.org
533, 617, 733, 2465, 3085, 3865, 14257, 17893, 22457, 83077, 104273, 130877, 484205, 607745, 762805, 2822153, 3542197, 4445953, 16448713, 20645437, 25912913, 95870125, 120330425, 151031525, 558772037, 701337113, 880276237
Offset: 1
(-92, a(1)) = (-92, 533) is a solution: (-92)^2+(-92+617)^2 = 8464+275625 = 284089 = 533^2.
(A115135(1), a(2)) = (0, 617) is a solution: 0^2+(0+617)^2 = 380689 = 617^2.
(A115135(3), a(4)) = (1407, 2465) is a solution: 1407^2+(1407+617)^2 = 1979649+4096576 = 6076225 = 2465^2.
Cf.
A115135,
A001653,
A156035 (decimal expansion of 3+2*sqrt(2)),
A160177 (decimal expansion of (633+100*sqrt(2))/617),
A160178 (decimal expansion of (755667+461578*sqrt(2))/617^2).
-
I:=[533,617,733,2465,3085,3865]; [n le 6 select I[n] else 6*Self(n31) -Self(n-6): n in [1..30]]; // G. C. Greubel, May 04 2018
-
LinearRecurrence[{0,0,6,0,0,-1}, {533,617,733,2465,3085,3865}, 50] (* G. C. Greubel, May 04 2018 *)
-
{forstep(n=-92, 10000000, [3, 1], if(issquare(2*n^2+1234*n+380689, &k), print1(k, ",")))}
-
x='x+O('x^30); Vec((1-x)*(533 +1150*x +1883*x^2 +1150*x^3 +533*x^4)/(1-6*x^3+x^6)) \\ G. C. Greubel, May 04 2018
A160206
Positive numbers y such that y^2 is of the form x^2+(x+857)^2 with integer x.
Original entry on oeis.org
697, 857, 1117, 3065, 4285, 6005, 17693, 24853, 34913, 103093, 144833, 203473, 600865, 844145, 1185925, 3502097, 4920037, 6912077, 20411717, 28676077, 40286537, 118968205, 167136425, 234807145, 693397513, 974142473, 1368556333
Offset: 1
(-185, a(1)) = (-185, 697) is a solution: (-185)^2+(-185+857)^2 = 34225+451584 = 485809 = 697^2.
(A129857(1), a(2)) = (0, 857) is a solution: 0^2+(0+857)^2 = 734449 = 857^2.
(A129857(3), a(4)) = (1696, 3065) is a solution: 1696^2+(1696+857)^2 = 2876416+6517809 = 9394225 = 3065^2.
Cf.
A129857,
A001653,
A156035 (decimal expansion of 3+2*sqrt(2)),
A160207 (decimal expansion of (907+210*sqrt(2))/857),
A160208 (decimal expansion of (1208787+678878*sqrt(2))/857^2).
-
I:=[697,857,1117,3065,4285,6005]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..40]]; // G. C. Greubel, May 14 2018
-
LinearRecurrence[{0,0,6,0,0,-1}, {697,857,1117,3065,4285,6005}, 50] (* G. C. Greubel, May 14 2018 *)
-
{forstep(n=-188, 10000000, [3, 1], if(issquare(2*n^2 +1714*n +734449, &k), print1(k, ",")))}
-
x='x+O('x^30); Vec((1-x)*(697+1554*x+2671*x^2+1554*x^3 +697*x^4 )/(1-6*x^3+x^6)) \\ G. C. Greubel, May 14 2018
A161478
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+113)^2 = y^2.
Original entry on oeis.org
0, 52, 175, 339, 615, 1312, 2260, 3864, 7923, 13447, 22795, 46452, 78648, 133132, 271015, 458667, 776223, 1579864, 2673580, 4524432, 9208395, 15583039, 26370595, 53670732, 90824880, 153699364, 312816223, 529366467, 895825815, 1823226832, 3085374148
Offset: 1
Cf.
A161479,
A001652,
A156035 (decimal expansion of 3+2*sqrt(2)),
A161480 (decimal expansion of (129+44*sqrt(2))/113),
A161481 (decimal expansion of (16131+6970*sqrt(2))/113^2).
-
LinearRecurrence[{1,0,6,-6,0,-1,1},{0,52,175,339,615,1312,2260},72] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
-
{forstep(n=0, 100000000, [3, 1], if(issquare(2*n^2+226*n+12769), print1(n, ",")))}
Comments