cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 138 results. Next

A159890 Positive numbers y such that y^2 is of the form x^2+(x+439)^2 with integer x.

Original entry on oeis.org

401, 439, 485, 1921, 2195, 2509, 11125, 12731, 14569, 64829, 74191, 84905, 377849, 432415, 494861, 2202265, 2520299, 2884261, 12835741, 14689379, 16810705, 74812181, 85615975, 97979969, 436037345, 499006471, 571069109, 2541411889
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

(-40, a(1)) and (A130645(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+439)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (443+42*sqrt(2))/439 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (450483+287918*sqrt(2))/439^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p= m^2 -2 a prime number in A028871, m>=5, the x values are given by the sequence defined by: a(n)= 6*a(n-3) -a(n-6) +2*p with a(1)=0, a(2)= 2*m+2, a(3)= 3*m^2 -10*m +8, a(4)= 3*p, a(5)= 3*m^2 +10*m +8, a(6)= 20*m^2 -58*m +42. Y values are given by the sequence defined by: b(n)= 6*b(n-3) -b(n-6) with b(1)= p, b(2)= m^2 +2*m +2, b(3)= 5*m^2 -14*m +10, b(4)= 5*p, b(5)= 5*m^2 +14*m +10, b(6)= 29*m^2 -82*m +58. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-40, a(1)) = (-40, 401) is a solution: (-40)^2+(-40+439)^2 = 1600+159201 = 160801 = 401^2.
(A130645(1), a(2)) = (0, 439) is a solution: 0^2+(0+439)^2 = 192721 = 439^2.
(A130645(3), a(4)) = (1121, 1921) is a solution: 1121^2+(1121+439)^2 = 1256641+2433600 = 3690241 = 1921^2.
		

Crossrefs

Cf. A130645, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159891 (decimal expansion of (443+42*sqrt(2))/439), A159892 (decimal expansion of (450483+287918*sqrt(2))/439^2).

Programs

  • Magma
    I:=[401,439,485,1921,2195,2509]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 17 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {401,439,485,1921,2195,2509}, 50] (* G. C. Greubel, May 17 2018 *)
  • PARI
    {forstep(n=-40, 10000000, [1, 3], if(issquare(2*n^2+878*n+192721, &k), print1(k, ",")))}
    

Formula

a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=401, a(2)=439, a(3)=485, a(4)=1921, a(5)=2195, a(6)=2509.
G.f.: (1-x)*(401+840*x+1325*x^2+840*x^3+401*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 439*A001653(k) for k >= 1.

A159893 Positive numbers y such that y^2 is of the form x^2+(x+727)^2 with integer x.

Original entry on oeis.org

677, 727, 785, 3277, 3635, 4033, 18985, 21083, 23413, 110633, 122863, 136445, 644813, 716095, 795257, 3758245, 4173707, 4635097, 21904657, 24326147, 27015325, 127669697, 141783175, 157456853, 744113525, 826372903, 917725793
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

(-52, a(1)) and (A130646(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+727)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (731+54*sqrt(2))/727 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1304787+843542*sqrt(2))/727^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p= m^2 -2 a prime number in A028871, m>=5, the x values are given by the sequence defined by: a(n)= 6*a(n-3) -a(n-6) +2*p with a(1)= 0, a(2)= 2*m +2, a(3)= 3*m^2 -10*m +8, a(4)= 3*p, a(5)= 3*m^2 +10*m +8, a(6)= 20*m^2 -58*m +42. Y values are given by the sequence defined by: b(n)= 6*b(n-3) -b(n-6) with b(1)= p, b(2)= m^2 +2*m +2, b(3)= 5*m^2 -14*m +10, b(4)= 5*p, b(5)= 5*m^2 +14*m +10, b(6)= 29*m^2 -82*m +58. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-52, a(1)) = (-52, 677) is a solution: (-52)^2+(-52+727)^2 = 2704+455625 = 458329 = 677^2.
(A130646(1), a(2)) = (0, 727) is a solution: 0^2+(0+727)^2 = 528529 = 727^2.
(A130646(3), a(4)) = (1925, 3277) is a solution: 1925^2+(1925+727)^2 = 3705625+7033104 = 10738729 = 3277^2.
		

Crossrefs

Cf. A130646, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159894 (decimal expansion of (731+54*sqrt(2))/727), A159895 (decimal expansion of (1304787+843542*sqrt(2))/727^2).

Programs

  • Magma
    I:=[677,727,785,3277,3635,4033]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 17 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {677,727,785,3277,3635,4033}, 50] (* G. C. Greubel, May 17 2018 *)
  • PARI
    {forstep(n=-52, 10000000, [1, 3], if(issquare(2*n^2+1454*n+528529, &k), print1(k, ",")))}
    

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=677, a(2)=727, a(3)=785, a(4)=3277, a(5)=3635, a(6)=4033.
G.f.: (1-x)*(677+1404*x+2189*x^2+1404*x^3+677*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 727*A001653(k) for k >= 1.

A159896 Positive numbers y such that y^2 is of the form x^2+(x+839)^2 with integer x.

Original entry on oeis.org

785, 839, 901, 3809, 4195, 4621, 22069, 24331, 26825, 128605, 141791, 156329, 749561, 826415, 911149, 4368761, 4816699, 5310565, 25463005, 28073779, 30952241, 148409269, 163625975, 180402881, 864992609, 953682071, 1051465045
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

(-56, a(1)) and (A130647(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+839)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (843+58*sqrt(2))/839 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1760979+1141390*sqrt(2))/839^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=m^2-2 a prime number in A028871, m>=5, the x values are given by the sequence defined by: a(n) = 6*a(n-3) -a(n-6) +2*p with a(1)=0, a(2) = 2*m+2, a(3) = 3*m^2 -10*m +8, a(4) = 3*p, a(5) = 3*m^2 +10*m +8, a(6) = 20*m^2 -58*m +42. Y values are given by the sequence defined by: b(n) = 6*b(n-3) -b(n-6) with b(1)=p, b(2)= m^2 +2*m +2, b(3)= 5*m^2 -14*m +10, b(4)= 5*p, b(5)= 5*m^2 +14*m +10, b(6)= 29*m^2 -82*m +58. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-56, a(1)) = (-56, 785) is a solution: (-56)^2+(-56+839)^2 = 3136+613089 = 616225 = 785^2.
(A130647(1), a(2)) = (0, 839) is a solution: 0^2+(0+839)^2 = 703921 = 839^2.
(A130647(3), a(4)) = (2241, 3809) is a solution: 2241^2+(2241+839)^2 = 5022081+9486400 = 14508481 = 3809^2.
		

Crossrefs

Cf. A130647, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159897 (decimal expansion of (843+58*sqrt(2))/839), A159898 (decimal expansion of (1760979+1141390*sqrt(2))/839^2).

Programs

  • Magma
    I:=[785,839,901,3809,4195,4621]; [n le 6 select I[n] else 6*Self(n-3) -Self(n-6): n in [1..30]]; // G. C. Greubel, May 17 2018
    
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {785,839,901,3809,4195,4621}, 30] (* Harvey P. Dale, Mar 03 2013 *)
  • PARI
    {forstep(n=-56, 10000000, [1, 3], if(issquare(2*n^2+1678*n+703921, &k), print1(k, ",")))}
    
  • PARI
    is(n,p=839)=for(m=sqrtint((max(n,984)^2-p^2)\2)-p\2,n,m^2+(m+p)^2A159896(n)=(matrix(6,6,i,j,if(i<6,i+1==j,j==4,6,j==1,-1))^n*[785,839,901,3809,4195,4621]~)[1] \\ M. F. Hasler, May 17 2018

Formula

a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=785, a(2)=839, a(3)=901, a(4)=3809, a(5)=4195, a(6)=4621.
G.f.: (1-x)*(785+1624*x+2525*x^2+1624*x^3+785*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 839*A001653(k) for k >= 1.

A160041 Positive numbers y such that y^2 is of the form x^2+(x+73)^2 with integer x.

Original entry on oeis.org

53, 73, 125, 193, 365, 697, 1105, 2117, 4057, 6437, 12337, 23645, 37517, 71905, 137813, 218665, 419093, 803233, 1274473, 2442653, 4681585, 7428173, 14236825, 27286277, 43294565, 82978297, 159036077, 252339217, 483632957, 926930185
Offset: 1

Views

Author

Klaus Brockhaus, May 04 2009

Keywords

Comments

(-28, a(1)) and (A129289(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+73)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (89+36*sqrt(2))/73 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (5907+1802*sqrt(2))/73^2 for n mod 3 = 1.

Examples

			(-28, a(1)) = (-28, 53) is a solution: (-28)^2+(-28+73)^2 = 784+2025 = 2809 = 53^2.
(A129289(1), a(2)) = (0, 73) is a solution: 0^2+(0+73)^2 = 5329 = 73^2.
(A129289(3), a(4)) = (95, 193) is a solution: 95^2+(95+73)^2 = 9025+28224 = 37249 = 193^2.
		

Crossrefs

Cf. A129289, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160042 (decimal expansion of (89+36*sqrt(2))/73), A160043 (decimal expansion of (5907+1802*sqrt(2))/73^2).

Programs

  • Magma
    I:=[53,73,125,193,365,697]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 21 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {53,73,125,193,365,697}, 50] (* G. C. Greubel, Apr 21 2018 *)
  • PARI
    {forstep(n=-28, 10000000, [3, 1], if(issquare(2*n^2+146*n+5329, &k), print1(k, ",")))}
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(53 +126*x +251*x^2 +126*x^3 +53*x^4)/(1 -6*x^3+x^6)) \\ G. C. Greubel, Apr 21 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=53, a(2)=73, a(3)=125, a(4)=193, a(5)=365, a(6)=697.
G.f.: (1-x)*(53 +126*x +251*x^2 +126*x^3 +53*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 73*A001653(k) for k >= 1.

A160055 Positive numbers y such that y^2 is of the form x^2+(x+89)^2 with integer x.

Original entry on oeis.org

65, 89, 149, 241, 445, 829, 1381, 2581, 4825, 8045, 15041, 28121, 46889, 87665, 163901, 273289, 510949, 955285, 1592845, 2978029, 5567809, 9283781, 17357225, 32451569, 54109841, 101165321, 189141605, 315375265, 589634701, 1102398061
Offset: 1

Views

Author

Klaus Brockhaus, May 04 2009

Keywords

Comments

(-33, a(1)) and (A129298(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+89)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (107+42*sqrt(2))/89 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (8979+2990*sqrt(2))/89^2 for n mod 3 = 1.

Examples

			(-33, a(1)) = (-33, 65) is a solution: (-33)^2+(-33+89)^2 = 1089+3136 = 4225 = 65^2.
(A129298(1), a(2)) = (0, 89) is a solution: 0^2+(0+89)^2 = 7921 = 89^2.
(A129298(3), a(4)) = (120, 241) is a solution: 120^2+(120+89)^2 = 14400+43681 = 58081 = 241^2.
		

Crossrefs

Cf. A129298, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160056 (decimal expansion of (107+42*sqrt(2))/89), A160057 (decimal expansion of (8979+2990*sqrt(2))/89^2).

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{65,89,149,241,445,829},40] (* Harvey P. Dale, Feb 04 2015 *)
  • PARI
    {forstep(n=-36, 10000000, [3, 1], if(issquare(2*n^2+178*n+7921, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=65, a(2)=89, a(3)=149, a(4)=241, a(5)=445, a(6)=829.
G.f.: (1-x)*(65+154*x+303*x^2+154*x^3+65*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 89*A001653(k) for k >= 1.

A160090 Positive numbers y such that y^2 is of the form x^2 + (x + 569)^2 with integer x.

Original entry on oeis.org

485, 569, 689, 2221, 2845, 3649, 12841, 16501, 21205, 74825, 96161, 123581, 436109, 560465, 720281, 2541829, 3266629, 4198105, 14814865, 19039309, 24468349, 86347361, 110969225, 142611989, 503269301, 646776041, 831203585, 2933268445
Offset: 1

Views

Author

Klaus Brockhaus, May 04 2009

Keywords

Comments

(-93, a(1)) and (A101152(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+569)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (587+102*sqrt(2))/569 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (617139+371510*sqrt(2))/569^2 for n mod 3 = 1.

Examples

			(-93, a(1)) = (-93, 485) is a solution: (-93)^2+(-93+569)^2 = 8649+226576 = 235225 = 485^2.
(A101152(1), a(2)) = (0, 569) is a solution: 0^2+(0+569)^2 = 323761= 569^2.
(A101152(3), a(4)) = (1260, 2221) is a solution: 1260^2+(1260+569)^2 = 1587600+3345241 = 4932841 = 2221^2.
		

Crossrefs

Cf. A101152, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160091 (decimal expansion of (587+102*sqrt(2))/569), A160092 (decimal expansion of (617139+371510*sqrt(2))/569^2).

Programs

  • Magma
    I:=[485,569,689,2221,2845,3649]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 21 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {485,569,689,2221,2845,3649}, 50] (* G. C. Greubel, Apr 21 2018 *)
  • PARI
    {forstep(n=-96, 10000000, [3, 1], if(issquare(2*n^2+1138*n+323761, &k), print1(k, ",")))}
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(485 +1054*x +1743*x^2 +1054*x^3 +485*x^4)/(1-6*x^3+x^6)) \\ G. C. Greubel, Apr 21 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=485, a(2)=569, a(3)=689, a(4)=2221, a(5)=2845, a(6)=3649.
G.f.: (1-x)*(485 +1054*x +1743*x^2 +1054*x^3 +485*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 569*A001653(k) for k >= 1.

A160098 Positive numbers y such that y^2 is of the form x^2+(x+601)^2 with integer x.

Original entry on oeis.org

425, 601, 1261, 1289, 3005, 7141, 7309, 17429, 41585, 42565, 101569, 242369, 248081, 591985, 1412629, 1445921, 3450341, 8233405, 8427445, 20110061, 47987801, 49118749, 117210025, 279693401, 286285049, 683150089, 1630172605
Offset: 1

Views

Author

Klaus Brockhaus, May 18 2009

Keywords

Comments

(-297, a(1)) and (A111258(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+601)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (843+418*sqrt(2))/601 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (361299+5950*sqrt(2))/601^2 for n mod 3 = 1.

Examples

			(-297, a(1)) = (-297, 425) is a solution: (-297)^2+(-297+601)^2 = 88209+92416 = 180625 = 425^2.
(A111258(1), a(2)) = (0, 601) is a solution: 0^2+(0+601)^2 = 361201 = 601^2.
(A111258(3), a(4)) = (560, 1289) is a solution: 560^2+(560+601)^2 = 313600+1347921 = 1661521 = 1289^2.
		

Crossrefs

Cf. A111258, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160099 (decimal expansion of (843+418*sqrt(2))/601), A160100 (decimal expansion of (361299+5950*sqrt(2))/601^2).

Programs

  • Magma
    I:=[425,601,1261,1289,3005,7141]; [n le 6 select I[n] else 5*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 22 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {425,601,1261,1289,3005,7141}, 50] (* G. C. Greubel, Apr 22 2018 *)
  • PARI
    {forstep(n=-300, 10000000, [3, 1], if(issquare(2*n^2+1202*n+361201, &k), print1(k, ",")))}
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(425 +1026*x +2287*x^2 +1026*x^3 +425*x^4 )/(1-6*x^3+x^6)) \\ G. C. Greubel, Apr 22 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=425, a(2)=601, a(3)=1261, a(4)=1289, a(5)=3005, a(6)=7141.
G.f.: (1-x)*(425 +1026*x +2287*x^2 +1026*x^3 +425*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 601*A001653(k) for k >= 1.

A160176 Positive numbers y such that y^2 is of the form x^2+(x+617)^2 with integer x.

Original entry on oeis.org

533, 617, 733, 2465, 3085, 3865, 14257, 17893, 22457, 83077, 104273, 130877, 484205, 607745, 762805, 2822153, 3542197, 4445953, 16448713, 20645437, 25912913, 95870125, 120330425, 151031525, 558772037, 701337113, 880276237
Offset: 1

Views

Author

Klaus Brockhaus, May 18 2009

Keywords

Comments

(-92, a(1)) and (A115135(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+617)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (633+100*sqrt(2))/617 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (755667+461578*sqrt(2))/617^2 for n mod 3 = 1.

Examples

			(-92, a(1)) = (-92, 533) is a solution: (-92)^2+(-92+617)^2 = 8464+275625 = 284089 = 533^2.
(A115135(1), a(2)) = (0, 617) is a solution: 0^2+(0+617)^2 = 380689 = 617^2.
(A115135(3), a(4)) = (1407, 2465) is a solution: 1407^2+(1407+617)^2 = 1979649+4096576 = 6076225 = 2465^2.
		

Crossrefs

Cf. A115135, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160177 (decimal expansion of (633+100*sqrt(2))/617), A160178 (decimal expansion of (755667+461578*sqrt(2))/617^2).

Programs

  • Magma
    I:=[533,617,733,2465,3085,3865]; [n le 6 select I[n] else 6*Self(n31) -Self(n-6): n in [1..30]]; // G. C. Greubel, May 04 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {533,617,733,2465,3085,3865}, 50] (* G. C. Greubel, May 04 2018 *)
  • PARI
    {forstep(n=-92, 10000000, [3, 1], if(issquare(2*n^2+1234*n+380689, &k), print1(k, ",")))}
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(533 +1150*x +1883*x^2 +1150*x^3 +533*x^4)/(1-6*x^3+x^6)) \\ G. C. Greubel, May 04 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=533, a(2)=617, a(3)=733, a(4)=2465, a(5)=3085, a(6)=3865.
G.f.: (1-x)*(533 +1150*x +1883*x^2 +1150*x^3 +533*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 617*A001653(k) for k >= 1.

A160206 Positive numbers y such that y^2 is of the form x^2+(x+857)^2 with integer x.

Original entry on oeis.org

697, 857, 1117, 3065, 4285, 6005, 17693, 24853, 34913, 103093, 144833, 203473, 600865, 844145, 1185925, 3502097, 4920037, 6912077, 20411717, 28676077, 40286537, 118968205, 167136425, 234807145, 693397513, 974142473, 1368556333
Offset: 1

Views

Author

Klaus Brockhaus, May 18 2009

Keywords

Comments

(-185, a(1)) and (A129857(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+857)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (907+210*sqrt(2))/857 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1208787+678878*sqrt(2))/857^2 for n mod 3 = 1.

Examples

			(-185, a(1)) = (-185, 697) is a solution: (-185)^2+(-185+857)^2 = 34225+451584 = 485809 = 697^2.
(A129857(1), a(2)) = (0, 857) is a solution: 0^2+(0+857)^2 = 734449 = 857^2.
(A129857(3), a(4)) = (1696, 3065) is a solution: 1696^2+(1696+857)^2 = 2876416+6517809 = 9394225 = 3065^2.
		

Crossrefs

Cf. A129857, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160207 (decimal expansion of (907+210*sqrt(2))/857), A160208 (decimal expansion of (1208787+678878*sqrt(2))/857^2).

Programs

  • Magma
    I:=[697,857,1117,3065,4285,6005]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..40]]; // G. C. Greubel, May 14 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {697,857,1117,3065,4285,6005}, 50] (* G. C. Greubel, May 14 2018 *)
  • PARI
    {forstep(n=-188, 10000000, [3, 1], if(issquare(2*n^2 +1714*n +734449, &k), print1(k, ",")))}
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(697+1554*x+2671*x^2+1554*x^3 +697*x^4 )/(1-6*x^3+x^6)) \\ G. C. Greubel, May 14 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=697, a(2)=857, a(3)=1117, a(4)=3065, a(5)=4285, a(6)=6005.
G.f.: (1-x)*(697+1554*x+2671*x^2+1554*x^3+697*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 857*A001653(k) for k >= 1.

A161478 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+113)^2 = y^2.

Original entry on oeis.org

0, 52, 175, 339, 615, 1312, 2260, 3864, 7923, 13447, 22795, 46452, 78648, 133132, 271015, 458667, 776223, 1579864, 2673580, 4524432, 9208395, 15583039, 26370595, 53670732, 90824880, 153699364, 312816223, 529366467, 895825815, 1823226832, 3085374148
Offset: 1

Views

Author

Klaus Brockhaus, Jun 13 2009

Keywords

Comments

Corresponding values y of solutions (x, y) are in A161479.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (129+44*sqrt(2))/113 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (16131+6970*sqrt(2))/113^2 for n mod 3 = 0.

Crossrefs

Cf. A161479, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A161480 (decimal expansion of (129+44*sqrt(2))/113), A161481 (decimal expansion of (16131+6970*sqrt(2))/113^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,52,175,339,615,1312,2260},72] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
  • PARI
    {forstep(n=0, 100000000, [3, 1], if(issquare(2*n^2+226*n+12769), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+226 for n > 6; a(1)=0, a(2)=52, a(3)=175, a(4)=339, a(5)=615, a(6)=1312.
G.f.: x*(52+123*x+164*x^2-36*x^3-41*x^4-36*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 113*A001652(k) for k >= 0.
Previous Showing 91-100 of 138 results. Next