cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 50 results.

A318579 Expansion of Product_{i>=1, j>=1} ((1 + x^(i*j))/(1 - x^(i*j)))^(i*j).

Original entry on oeis.org

1, 2, 10, 30, 98, 270, 786, 2046, 5418, 13556, 33726, 81002, 192902, 447562, 1027990, 2316750, 5165398, 11345298, 24668952, 52972902, 112688802, 237193354, 494933514, 1023238806, 2098662698, 4269141516, 8620916966, 17280687472, 34405835066, 68044209950, 133732805458
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 29 2018

Keywords

Comments

Convolution of A280540 and A280541.

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(((1+x^(i*j))/(1-x^(i*j)))^(i*j),j=1..100),i=1..100),x=0,31): seq(coeff(a,x,n),n=0..30); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[Product[((1 + x^(i j))/(1 - x^(i j)))^(i j), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(k DivisorSigma[0, k]), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(1 - (-1)^(k/d)) d^2 DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*tau(k)), where tau(k) = number of divisors of k (A000005).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (1 - (-1)^(k/d))*d^2*tau(d) ) * x^k/k).
log(a(n)) ~ 3^(2/3) * (7*Zeta(3))^(1/3) * log(n)^(1/3) * n^(2/3) / 2^(4/3). - Vaclav Kotesovec, Sep 03 2018

A361008 G.f.: Product_{k >= 0} ((1 + x^(2*k+1)) / (1 - x^(2*k+1)))^k.

Original entry on oeis.org

1, 0, 0, 2, 0, 4, 2, 6, 8, 10, 20, 18, 42, 40, 78, 92, 140, 192, 258, 382, 480, 728, 902, 1334, 1698, 2404, 3148, 4292, 5742, 7608, 10304, 13430, 18192, 23592, 31720, 41144, 54766, 71188, 93762, 122156, 159420, 207820, 269380, 350726, 452434, 587520, 755446
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2*k + 1))/(1 - x^(2*k + 1)))^k, {k, 0, n}], {x, 0, n}], {n, 0, 50}]

Formula

a(n) ~ sqrt(A/(3*Pi)) * (7*zeta(3))^(11/72) * exp(3*(7*zeta(3))^(1/3) * n^(2/3)/4 - Pi^2 * n^(1/3)/(8*(7*zeta(3))^(1/3)) - 1/24 - Pi^4/(1344*zeta(3))) / (2^(3/4) * n^(47/72)), where A = A074962 is the Glaisher-Kinkelin constant.

A265015 a(n) = A015128(n)^n.

Original entry on oeis.org

1, 2, 16, 512, 38416, 7962624, 4096000000, 4398046511104, 10000000000000000, 48717667557975775744, 451730952053751361306624, 7982572438812891719395180544, 268637376395543538746286686601216, 16132732437821617561429013924830773248
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 05 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; A015128 = Rest[CoefficientList[Series[Product[(1+x^k)/(1-x^k), {k,1,nmax}], {x,0,nmax}], x]]; Flatten[{1, Table[A015128[[n]]^n, {n,1,nmax}]}]

Formula

a(n) ~ exp(Pi*n^(3/2) - sqrt(n)/Pi - 1/(2*Pi^2)) / (8^n * n^n) * (1 - 1/(3*Pi^3*sqrt(n))).

A301625 G.f. A(x) satisfies: A(x) = Product_{k>=1} ((1 + x^k*A(x)^k)/(1 - x^k*A(x)^k))^k.

Original entry on oeis.org

1, 2, 10, 60, 398, 2820, 20892, 159868, 1253758, 10024070, 81400672, 669532924, 5566386324, 46701736772, 394910202608, 3362210548344, 28797181196766, 247955463799812, 2145088563952510, 18636002388075260, 162523319555310664, 1422259430668179592, 12485554521209720492, 109922263517662775292
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2018

Keywords

Examples

			G.f. A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 398*x^4 + 2820*x^5 + 20892*x^6 + 159868*x^7 + 1253758*x^8 + ...
G.f. A(x) satisfies: A(x) = ((1 + x*A(x)) * (1 + x^2*A(x)^2)^2 * (1 + x^3*A(x)^3)^3 * ...)/((1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * ...).
log(A(x)) = 2*x + 16*x^2/2 + 128*x^3/3 + 1056*x^4/4 + 8952*x^5/5 + 77200*x^6/6 + 673948*x^7/7 + 5937792*x^8/8 + ... + A270924(n)*x^n/n + ...
		

Crossrefs

A302238 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^prime(k).

Original entry on oeis.org

1, 4, 14, 46, 136, 382, 1022, 2626, 6530, 15784, 37218, 85842, 194146, 431358, 943038, 2031454, 4316884, 9058662, 18787730, 38542526, 78264298, 157403290, 313712482, 619919350, 1215125262, 2363570168, 4563951858, 8751621598, 16670498062, 31553539214, 59361428202
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Comments

Convolution of the sequences A030009 and A061152.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A000040(k).

A302239 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^p(k), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 2, 6, 16, 40, 96, 226, 512, 1140, 2488, 5336, 11270, 23494, 48356, 98438, 198338, 395846, 783136, 1536800, 2992818, 5786952, 11114950, 21213906, 40247696, 75928804, 142475644, 265985628, 494155176, 913802164, 1682338192, 3084101744, 5630853218, 10240484332, 18553818210
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Comments

Convolution of the sequences A001970 and A261049.

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A000041(k).

A318764 Expansion of Product_{i>=1, j>=1, k>=1} ((1 + x^(i*j*k))/(1 - x^(i*j*k)))^(i*j*k).

Original entry on oeis.org

1, 2, 14, 44, 182, 548, 1932, 5632, 17654, 49872, 145020, 395256, 1090044, 2876424, 7606024, 19503312, 49850790, 124543772, 309436980, 755268832, 1831194724, 4376807896, 10387118328, 24359228520, 56720659372, 130737105940, 299256890672, 678941040784
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 03 2018

Keywords

Comments

Convolution of A318413 and A318414.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[Product[((1 + x^(i*j*k))/(1 - x^(i*j*k)))^(i*j*k), {i, 1, nmax/j/k}], {j, 1, nmax/k}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k*Sum[DivisorSigma[0, d], {d, Divisors[k]}]), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

Conjecture: log(a(n)) ~ (21*Zeta(3))^(1/3) * log(n)^(2/3) * n^(2/3) / 2^(5/3).

A296048 Expansion of e.g.f. Product_{k>=1} ((1 - x^k)/(1 + x^k))^(1/k).

Original entry on oeis.org

1, -2, 2, -4, 32, -128, 496, -2336, 29312, -395776, 3194624, -21951488, 277270528, -4027191296, 38850203648, -739834458112, 19460560584704, -299971773661184, 3169121209090048, -51853341314514944, 1234704403684130816, -30653318499154788352, 658369600764729884672, -10809496145754051313664
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(((1-x^k)/(1+x^k))^(1/k),k=1..100),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Product[((1 - x^k)/(1 + x^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 23; CoefficientList[Series[Exp[-2 Sum[Total[Mod[Divisors[k], 2] x^k]/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(-2*Sum_{k>=1} A001227(k)*x^k/k).
E.g.f.: exp(-Sum_{k>=1} A054844(k)*x^k/k).

A300412 a(n) = [x^n] Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k.

Original entry on oeis.org

1, 2, 16, 144, 1376, 15800, 210816, 3333372, 61688448, 1318588146, 32004369200, 869282342632, 26099925704928, 857736429098848, 30605729417479104, 1177841009504482200, 48614265201514729984, 2141639401723095243324, 100282931820560447963568, 4973060138191518242569120
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k begins:
n = 0: (1),  0,   0,    0,     0,       0,  ...
n = 1:  1,  (2),  6,   16,    38,      88,  ...
n = 2:  1,   4, (16),  60,   192,     596,  ...
n = 3:  1,   6,  30, (144),  582,    2280,  ...
n = 4:  1,   8,  48,  280, (1376),   6568,  ...
n = 5:  1,  10,  70,  480,  2790,  (15800), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + n x^k)/(1 - n x^k))^k, {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ 2 * n^n * (1 + 4/n + 14/n^2 + 44/n^3 + 124/n^4 + 328/n^5 + 824/n^6 + 1980/n^7 + 4590/n^8 + 10320/n^9 + 22584/n^10 + ...), for coefficients see A261451. - Vaclav Kotesovec, Mar 05 2018

A321389 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k^k).

Original entry on oeis.org

1, 2, 10, 72, 670, 7896, 113532, 1938948, 38463150, 869969602, 22098936536, 622728174288, 19271479902324, 649553475002720, 23680210649058960, 928276725059295192, 38931910620358040382, 1739307894106738293052, 82457731356894087128054, 4134332188240252347401752, 218571692793801915329820184
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 08 2018

Keywords

Comments

Convolution of A023880 and A261053.

Crossrefs

Programs

  • Maple
    a:=series(mul(((1+x^k)/(1-x^k))^(k^k),k=1..100),x=0,21): seq(coeff(a,x,n),n=0..20); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(k^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[((-1)^(k/d + 1) + 1) d^(d + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 20}]
  • PARI
    seq(n)={Vec(exp(sum(k=1, n, sumdiv(k,d, ((-1)^(k/d+1) + 1)*d^(d+1) ) * x^k/k) + O(x*x^n)))} \\ Andrew Howroyd, Nov 09 2018

Formula

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} ((-1)^(k/d+1) + 1)*d^(d+1) ) * x^k/k).
a(n) ~ 2 * n^n * (1 + 2*exp(-1)/n + (exp(-1) + 10*exp(-2))/n^2). - Vaclav Kotesovec, Nov 09 2018
Previous Showing 41-50 of 50 results.