cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A375839 a(n) = Product_{k=0..n} (k^2 + n).

Original entry on oeis.org

0, 2, 36, 1008, 41600, 2381400, 180457200, 17467670528, 2100621828096, 306960977700000, 53529274174376000, 10973787848179200000, 2611472797582941487104, 713649909809783275801472, 221870902844468552220000000, 77837994361783539267010560000
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^2 + n, {k, 0, n}], {n, 0, 15}]
    Round[Table[Sqrt[n] * Gamma[1 - I*Sqrt[n] + n] * Gamma[1 + I*Sqrt[n] + n] * Sinh[Sqrt[n]*Pi] / Pi, {n, 0, 15}]]

Formula

a(n) ~ n^(2*n + 3/2) / exp(2*n - Pi*n^(1/2) + 1).

A326864 G.f.: Product_{k>=1} (1 + x^k/k^2) = Sum_{n>=0} a(n)*x^n/n!^2.

Original entry on oeis.org

1, 1, 1, 13, 100, 1876, 57636, 2051316, 104640768, 6819033600, 576652089600, 57187381536000, 7057192160793600, 1014733052692300800, 172646881540527744000, 33848454886497227289600, 7637231669166956976537600, 1948418678155880277481881600
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Examples

			a(n) ~ c * (n-1)!^2, where c = A156648 = Product_{k>=1} (1 + 1/k^2) = sinh(Pi)/Pi = 3.67607791037497772...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 27 2023
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1+x^k/k^2), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!^2

A334401 Decimal expansion of sinh(Pi).

Original entry on oeis.org

1, 1, 5, 4, 8, 7, 3, 9, 3, 5, 7, 2, 5, 7, 7, 4, 8, 3, 7, 7, 9, 7, 7, 3, 3, 4, 3, 1, 5, 3, 8, 8, 4, 0, 9, 6, 8, 4, 4, 9, 5, 1, 8, 9, 0, 6, 6, 3, 9, 4, 7, 8, 9, 4, 5, 5, 2, 3, 2, 1, 6, 3, 3, 6, 1, 0, 6, 1, 6, 4, 5, 7, 9, 2, 4, 6, 6, 7, 1, 7, 4, 0, 7, 9, 0, 9, 4, 1, 6, 0, 1, 8, 5, 5, 2, 8, 2, 4, 0, 6, 7, 6, 4, 4, 4, 6, 7, 9, 4, 8
Offset: 2

Views

Author

Ilya Gutkovskiy, Apr 26 2020

Keywords

Comments

This constant is transcendental.

Examples

			(e^Pi - e^(-Pi))/2 = 11.5487393572577483779773343153884...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[Pi], 10, 110] [[1]]

Formula

Equals Sum_{k>=0} Pi^(2*k+1)/(2*k+1)!.
Equals 2 * Product_{k>=1} (4*k^2+4)/(4*k^2-1).

A307216 Decimal expansion of Product_{k>=1} (1 + 1/k^5).

Original entry on oeis.org

2, 0, 7, 4, 2, 2, 5, 0, 4, 4, 7, 9, 6, 3, 7, 8, 9, 1, 3, 9, 0, 7, 0, 8, 9, 6, 8, 5, 9, 4, 3, 8, 4, 0, 5, 6, 9, 7, 7, 1, 2, 5, 3, 3, 7, 9, 6, 2, 2, 2, 7, 2, 8, 8, 3, 3, 4, 7, 3, 4, 0, 3, 6, 9, 8, 8, 3, 6, 1, 9, 6, 0, 5, 9, 6, 2, 5, 9, 0, 1, 5, 9, 1, 8, 6, 4, 7, 2, 4, 8, 5, 8, 4, 4, 4, 2, 9, 2, 3, 6, 6, 3, 2, 5, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 29 2019

Keywords

Examples

			2.07422504479637891390708968594384056977125337962227288334734036988361960596259...
		

Crossrefs

Programs

  • Maple
    evalf(Product(1 + 1/j^5, j = 1..infinity), 120);
  • Mathematica
    RealDigits[Chop[N[Product[(1 + 1/n^5), {n, 1, Infinity}], 120]]][[1]]
    With[{g = GoldenRatio}, Chop[N[1/(Gamma[1/(2*g^2) - I*5^(1/4)/(2*Sqrt[g])] * Gamma[g^2/2 + I*5^(1/4) * Sqrt[g]/2] * Gamma[g^2/2 - I*5^(1/4) * Sqrt[g]/2] * Gamma[1/(2*g^2) + I*5^(1/4)/(2*Sqrt[g])]), 120]]]
    N[1/Abs[Gamma[Exp[2*Pi*I/5]]*Gamma[Exp[6*Pi*I/5]]]^2, 120] (* Vaclav Kotesovec, Apr 27 2020 *)
  • PARI
    default(realprecision, 120); exp(sumalt(j=1, -(-1)^j*zeta(5*j)/j))

Formula

Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(5*j)/j)).
Equals 1/(Gamma(1/(2*phi^2) - i*(5^(1/4)/(2*sqrt(phi)))) * Gamma(phi^2/2 + i*5^(1/4)*(sqrt(phi)/2)) * Gamma(phi^2/2 - i*5^(1/4)*(sqrt(phi)/2)) * Gamma(1/(2*phi^2) + i*(5^(1/4)/(2*sqrt(phi))))), where i is the imaginary unit and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

A308717 Decimal expansion of cosh(sqrt(3)*Pi/2)*sech(Pi/2).

Original entry on oeis.org

3, 0, 4, 0, 1, 9, 1, 5, 5, 1, 6, 4, 2, 5, 5, 3, 0, 7, 5, 6, 0, 1, 8, 6, 0, 0, 2, 7, 9, 0, 0, 7, 5, 7, 2, 3, 3, 8, 2, 3, 8, 5, 4, 9, 0, 5, 8, 7, 9, 1, 7, 1, 6, 7, 7, 9, 4, 1, 6, 5, 9, 7, 5, 1, 8, 4, 0, 8, 8, 5, 3, 9, 2, 5, 2, 3, 3, 2, 0, 4, 4, 1, 9, 6, 5, 1, 4, 6, 1, 8, 2, 9, 9, 0, 2, 5, 5, 0, 2, 1, 9, 7, 1, 1, 2, 0, 4, 8, 3, 0, 3, 9, 2, 2, 3, 1, 0, 5, 0, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 19 2019

Keywords

Examples

			3.040191551642553075601860027900757233823854905879...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[Sqrt[3] Pi/2] Sech[Pi/2], 10, 120][[1]]
  • PARI
    cosh(sqrt(3)*Pi/2)/cosh(Pi/2) \\ Michel Marcus, Jun 20 2019

Formula

Equals Product_{k>=0} (1 + 1/(2*k*(k + 1) + 1)).
Equals Product_{k>=0} (1 + 1/A001844(k)).

A330864 Decimal expansion of sinh(Pi/2)/2.

Original entry on oeis.org

1, 1, 5, 0, 6, 4, 9, 4, 5, 1, 1, 5, 3, 6, 4, 7, 4, 3, 6, 7, 3, 1, 5, 2, 0, 0, 1, 1, 7, 1, 7, 2, 1, 3, 5, 8, 9, 0, 8, 9, 0, 7, 3, 2, 5, 8, 2, 5, 8, 1, 9, 1, 3, 3, 2, 9, 8, 6, 4, 1, 9, 9, 0, 1, 5, 4, 6, 7, 8, 3, 0, 0, 6, 9, 0, 1, 5, 2, 4, 9, 9, 9, 2, 4, 0, 0, 2, 6, 1, 2, 2, 1, 7, 9, 6, 1, 4, 3, 2, 9, 8, 2, 9, 1, 9, 0, 1, 1, 2, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Comments

This constant is transcendental.

Examples

			(1 + 1/2^2) * (1 - 1/3^2) * (1 + 1/4^2) * (1 - 1/5^2) * (1 + 1/6^2) * ... = (e^(Pi/2) - e^(-Pi/2))/4 = 1.15064945115364743673152001...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[Pi/2]/2, 10, 110] [[1]]
  • PARI
    sinh(Pi/2)/2 \\ Michel Marcus, Apr 28 2020

Formula

Equals Sum_{k>=1} Pi^(2*k-1)/(4^k*(2*k-1)!).
Equals Product_{k>=2} (1 + (-1)^k/k^2).
Equals (i^(-i) - i^i)/4, where i is the imaginary unit.

A330865 Decimal expansion of cosh(Pi/2)/Pi.

Original entry on oeis.org

7, 9, 8, 6, 9, 6, 3, 1, 5, 9, 5, 6, 4, 6, 3, 0, 8, 4, 8, 6, 3, 8, 0, 6, 7, 0, 4, 2, 2, 1, 0, 9, 6, 1, 3, 8, 6, 9, 1, 4, 9, 2, 8, 7, 4, 1, 8, 5, 1, 2, 9, 1, 2, 3, 4, 8, 3, 7, 2, 6, 6, 4, 0, 6, 4, 5, 9, 0, 2, 4, 3, 1, 1, 2, 9, 6, 8, 6, 5, 4, 3, 0, 6, 7, 6, 6, 4, 1, 0, 6, 5, 9, 8, 7, 3, 9, 6, 2, 3, 2, 2, 2, 5, 7, 1, 0, 1, 5, 8, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Examples

			(1 - 1/2^2) * (1 + 1/3^2) * (1 - 1/4^2) * (1 + 1/5^2) * (1 - 1/6^2) * ... = (e^(Pi/2) + e^(-Pi/2))/(2*Pi) = 0.7986963159564630848638067...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[Pi/2]/Pi, 10, 110] [[1]]
  • PARI
    cosh(Pi/2)/Pi \\ Michel Marcus, Apr 28 2020

Formula

Equals Sum_{k>=0} Pi^(2*k-1)/(4^k*(2*k)!).
Equals Product_{k>=2} (1 - (-1)^k/k^2).
Equals (i^(-i) + i^i)/(2*Pi), where i is the imaginary unit.
Previous Showing 11-17 of 17 results.