cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A157460 Expansion of 88*x^2 / (1-483*x+483*x^2-x^3).

Original entry on oeis.org

0, 88, 42504, 20486928, 9874656880, 4759564129320, 2294100035675448, 1105751457631436704, 532969908478316815968, 256890390135091073859960, 123820635075205419283684840, 59681289215858877003662233008, 28766257581408903510345912625104
Offset: 1

Views

Author

Paul Weisenhorn, Mar 01 2009

Keywords

Comments

This sequence is part of a solution of a more general problem involving two equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, for details see comment in A157014.
A157460 is the c(n) sequence for A=5.

Crossrefs

5*A157460(n)+1 = A157014(n)^2 for n>=1.
6*A157460(n)+1 = A133283(n)^2 for n>=1.

Programs

  • Mathematica
    CoefficientList[Series[88x^2/(1-483x+483x^2-x^3),{x,0,30}],x] (* or *) LinearRecurrence[{483,-483,1},{0,0,88},30] (* Harvey P. Dale, Apr 16 2015 *)
  • PARI
    concat(0, Vec(88*x^2/(1-483*x+483*x^2-x^3)+O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    a(n) = round(-((241+44*sqrt(30))^(-n)*(-1+(241+44*sqrt(30))^n)*(11+2*sqrt(30)+(-11+2*sqrt(30))*(241+44*sqrt(30))^n))/120) \\ Colin Barker, Jul 25 2016

Formula

G.f.: 88*x^2 / (1-483*x+483*x^2-x^3).
c(1) = 0, c(2) = 88, c(3) = 483*c(2), c(n) = 483*(c(n-1)-c(n-2))+c(n-3) for n>3.
a(n) = -((241+44*sqrt(30))^(-n)*(-1+(241+44*sqrt(30))^n)*(11+2*sqrt(30)+(-11+2*sqrt(30))*(241+44*sqrt(30))^n))/120. - Colin Barker, Jul 25 2016

Extensions

Edited by Alois P. Heinz, Sep 09 2011

A157880 Expansion of 136*x^2 / (-x^3+1155*x^2-1155*x+1).

Original entry on oeis.org

0, 136, 157080, 181270320, 209185792336, 241400223085560, 278575648254944040, 321476056685982336736, 370983090839975361649440, 428114165353274881361117160, 494043375834588373115367553336, 570125627598949629300252795432720, 657924480205812037624118610561805680
Offset: 1

Views

Author

Paul Weisenhorn, Mar 08 2009

Keywords

Comments

This sequence is part of a solution of a more general problem involving two equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, for details see comment in A157014.
A157880 is the c(n) sequence for A=8.

Crossrefs

8*A157880(n)+1 = A077420(n-1)^2.
9*A157880(n)+1 = A046176(n)^2.

Programs

  • Mathematica
    LinearRecurrence[{1155,-1155,1},{0,136,157080},20] (* Harvey P. Dale, Dec 04 2019 *)
  • PARI
    concat(0, Vec(136*x^2/(-x^3+1155*x^2-1155*x+1) + O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    a(n) = round(-((577+408*sqrt(2))^(-n)*(-1+(577+408*sqrt(2))^n)*(17+12*sqrt(2)+(-17+12*sqrt(2))*(577+408*sqrt(2))^n))/288) \\ Colin Barker, Jul 25 2016

Formula

G.f.: 136*x^2/(-x^3+1155*x^2-1155*x+1).
c(1) = 0, c(2) = 136, c(3) = 1155*c(2), c(n) = 1155 * (c(n-1)-c(n-2)) + c(n-3) for n>3.
a(n) = -((577+408*sqrt(2))^(-n)*(-1+(577+408*sqrt(2))^n)*(17+12*sqrt(2)+(-17+12*sqrt(2))*(577+408*sqrt(2))^n))/288. - Colin Barker, Jul 25 2016

Extensions

Edited by Alois P. Heinz, Sep 09 2011

A157881 Expansion of 152*x^2 / (-x^3+1443*x^2-1443*x+1).

Original entry on oeis.org

0, 152, 219336, 316282512, 456079163120, 657665836936680, 948353680783529592, 1367525350024012735136, 1971970606380945580536672, 2843580246875973503121146040, 4100440744024547410555112053160, 5912832709303150490046968459510832
Offset: 1

Views

Author

Paul Weisenhorn, Mar 08 2009, Jun 25 2009

Keywords

Comments

This sequence is part of a solution of a more general problem involving two equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, for details see comment in A157014.
A157881 is the c(n) sequence for A=9.

Crossrefs

8*A157881(n)+1 = A097315(n-1)^2.
9*A157881(n)+1 = A097314(n-1)^2.

Programs

  • Mathematica
    LinearRecurrence[{1443,-1443,1},{0,152,219336},20] (* Harvey P. Dale, Jul 18 2019 *)
  • PARI
    concat(0, Vec(152*x^2/(-x^3+1443*x^2-1443*x+1) + O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    a(n) = round(-((721+228*sqrt(10))^(-n)*(-1+(721+228*sqrt(10))^n)*(19+6*sqrt(10)+(-19+6*sqrt(10))*(721+228*sqrt(10))^n))/360) \\ Colin Barker, Jul 25 2016

Formula

G.f.: 152*x^2/(-x^3+1443*x^2-1443*x+1).
c(1) = 0, c(2) = 152, c(3) = 1443*c(2), c(n) = 1443 * (c(n-1)-c(n-2)) + c(n-3) for n>3.
a(n) = -((721+228*sqrt(10))^(-n)*(-1+(721+228*sqrt(10))^n)*(19+6*sqrt(10)+(-19+6*sqrt(10))*(721+228*sqrt(10))^n))/360. - Colin Barker, Jul 25 2016

Extensions

Edited by Alois P. Heinz, Sep 09 2011

A238245 Positive integers n such that x^2 - 22xy + y^2 + n = 0 has integer solutions.

Original entry on oeis.org

20, 39, 56, 71, 80, 84, 95, 104, 111, 116, 119, 120, 156, 180, 191, 224, 239, 255, 284, 296, 311, 320, 336, 351, 359, 380, 399, 404, 416, 431, 444, 455, 464, 471, 476, 479, 480, 500, 504, 551, 596, 599, 624, 639, 680, 695, 696, 719, 720, 756, 764, 791, 824
Offset: 1

Views

Author

Colin Barker, Feb 20 2014

Keywords

Examples

			39 is in the sequence because x^2 - 22xy + y^2 + 39 = 0 has integer solutions, for example (x, y) = (2, 43).
		

Crossrefs

Cf. A157014 (n = 20), A137881 (n = 104), A077422 (n = 120), A133275 (n = 180).

A269028 a(n) = 40*a(n - 1) - a(n - 2) for n>1, a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 39, 1559, 62321, 2491281, 99588919, 3981065479, 159143030241, 6361740144161, 254310462736199, 10166056769303799, 406387960309415761, 16245352355607326641, 649407706263983649879, 25960062898203738668519, 1037753108221885563090881
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = k*b(n - 1) - b(n - 2) with n>1 and b(0)=1, b(1)=1, is (1 - (k - 1)*x)/(1 - k*x +x^2). This recurrence gives the closed form b(n) = (2^( -n - 1)*((k - 2)*(k - sqrt(k^2 - 4))^n + sqrt(k^2 - 4)*(k - sqrt(k^2 - 4))^n - (k - 2)*(sqrt(k^2 - 4) + k)^n + sqrt(k^2 - 4)*(sqrt(k^2 - 4) + k)^n))/sqrt(k^2 - 4).

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else 40*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 19 2016
  • Mathematica
    Table[Cosh[n Log[20 + Sqrt[399]]] - Sqrt[19/21] Sinh[n Log[20 + Sqrt[399]]], {n, 0, 17}]
    Table[(2^(-n - 2) (38 (40 - 2 Sqrt[399])^n + 2 Sqrt[399] (40 - 2 Sqrt[399])^n - 38 (40 + 2 Sqrt[399])^n + 2 Sqrt[399] (40 + 2 Sqrt[399])^n))/Sqrt[399], {n, 0, 17}]
    LinearRecurrence[{40, -1}, {1, 1}, 17]

Formula

G.f.: (1 - 39*x)/(1 - 40*x + x^2).
a(n) = cosh(n*log(20 + sqrt(399))) - sqrt(19/21)*sinh(n*log(20 + sqrt(399))).
a(n) = (2^(-n - 2)*(38*(40 - 2*sqrt(399))^n + 2*sqrt(399)*(40 - 2*sqrt(399))^n - 38*(40 + 2*sqrt(399))^n + 2*sqrt(399)*(40 + 2*sqrt(399))^n))/sqrt(399).
Sum_{n>=0} 1/a(n) = 2.0262989201139499769986...
Previous Showing 11-15 of 15 results.