cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A323374 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = A323373(n) for all other numbers, except f(p) = -(p mod 2) for primes p.

Original entry on oeis.org

1, 2, 3, 4, 3, 4, 3, 5, 6, 5, 3, 5, 3, 7, 8, 9, 3, 7, 3, 9, 10, 11, 3, 9, 12, 13, 14, 15, 3, 9, 3, 16, 12, 16, 17, 13, 3, 18, 17, 16, 3, 13, 3, 19, 20, 21, 3, 16, 22, 19, 23, 24, 3, 18, 25, 26, 27, 28, 3, 16, 3, 29, 30, 31, 32, 33, 3, 31, 34, 24, 3, 26, 3, 35, 25, 36, 37, 26, 3, 31, 38, 39, 3, 26, 40, 41, 42, 39, 3, 26, 43, 44, 37, 45, 46, 31, 3, 41, 47, 39, 3, 31, 3, 48
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A039651(i) = A039651(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A049559(n) = gcd(eulerphi(n), n-1);
    A160595(n) = if(1==n, n, numerator(eulerphi(n)/(n-1)));
    Aux323374(n) = if(isprime(n),-(n%2),[A049559(n), A160595(n)]);
    v323374 = rgs_transform(vector(up_to, n, Aux323374(n)));
    A323374(n) = v323374[n];

A340088 a(n) = A091732(n) / gcd(n-1, A091732(n)), where A091732 is an infinitary analog of Euler's phi function.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 6, 1, 6, 4, 1, 1, 8, 1, 12, 3, 10, 1, 6, 1, 12, 8, 2, 1, 8, 1, 15, 5, 16, 12, 24, 1, 18, 12, 4, 1, 12, 1, 30, 8, 22, 1, 30, 1, 24, 16, 12, 1, 16, 20, 18, 9, 28, 1, 24, 1, 30, 24, 5, 3, 4, 1, 48, 11, 8, 1, 24, 1, 36, 24, 18, 15, 24, 1, 60, 1, 40, 1, 36, 16, 42, 28, 10, 1, 32, 4, 66
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Comments

Conjecture: a(n) = 1 iff n = 1 or in A050376. This is an infinitary analog of Lehmer's totient conjecture from 1932.
For all i, j > 1: a(i) = a(j) => A302777(i) = A302777(j), if the above conjecture holds.

Crossrefs

Programs

  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); };
    A340088(n) = { my(x=A091732(n)); (x/gcd(n-1, x)); };

Formula

a(n) = A091732(n) / A340087(n) = A091732(n) / gcd(n-1, A091732(n)).
For all n >= 1, a(A084400(n)) = 1.

A345938 a(n) = uphi(n) / gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 6, 1, 6, 4, 1, 1, 8, 1, 12, 3, 10, 1, 14, 1, 12, 1, 2, 1, 8, 1, 1, 5, 16, 12, 24, 1, 18, 12, 28, 1, 12, 1, 30, 8, 22, 1, 30, 1, 24, 16, 12, 1, 26, 20, 42, 9, 28, 1, 24, 1, 30, 24, 1, 3, 4, 1, 48, 11, 8, 1, 56, 1, 36, 24, 18, 15, 24, 1, 60, 1, 40, 1, 36, 16, 42, 28, 70, 1, 32, 4, 66, 15
Offset: 1

Views

Author

Antti Karttunen, Jun 29 2021

Keywords

Comments

For all squarefree n (A005117), a(n) = A160595(n), thus if there are any composite solutions to the Lehmer's totient conjecture, then they give also a such a subset of positions of 1's in this sequence that are not powers of primes. See comments in A160595.

Crossrefs

Programs

  • Mathematica
    uphi[1]=1;uphi[n_]:=Times@@(#[[1]]^#[[2]]-1&/@FactorInteger[n]);
    a[n_]:=uphi[n]/GCD[n-1,uphi[n]];Array[a,100]  (* Giorgos Kalogeropoulos, Jun 30 2021 *)
  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    A345938(n) = { my(u=A047994(n)); (u/gcd(n-1, u)); };

Formula

a(n) = A047994(n) / A345937(n) = A047994(n) / gcd(n-1, A047994(n)).
a(2n-1) = A345948(2n-1), for all n >= 1.

A160598 Numerator of coresilience C(n) = (n - phi(n))/(n-1).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 4, 3, 2, 1, 8, 1, 8, 1, 8, 1, 12, 1, 12, 9, 4, 1, 16, 5, 14, 9, 16, 1, 22, 1, 16, 13, 6, 11, 24, 1, 20, 15, 8, 1, 30, 1, 24, 21, 8, 1, 32, 7, 30, 19, 28, 1, 36, 5, 32, 3, 10, 1, 44, 1, 32, 27, 32, 17, 46, 1, 36, 25, 2, 1, 48, 1, 38, 35, 8, 17, 54, 1, 48, 27, 14, 1, 60, 1
Offset: 2

Views

Author

M. F. Hasler, May 23 2009

Keywords

Comments

Obviously C(p) = 1/(p-1), i.e., a(p)=1, for all primes p. Sequence A160599 lists composite numbers for which this is the case.

Examples

			a(10)=2 since for n=10, we have (n - phi(n))/(n-1) = (10-4)/9 = 2/3.
		

Crossrefs

Programs

  • Magma
    [Numerator((n-EulerPhi(n))/(n-1)): n in [2..80]]; // Vincenzo Librandi, Dec 27 2016
  • Mathematica
    Numerator[Table[(n - EulerPhi[n])/(n - 1), {n, 2, 90}]] (* Vincenzo Librandi, Dec 27 2016 *)
  • PARI
    A160598(n)=numerator((n-eulerphi(n))/(n-1))
    

A339965 a(n) = sigma(n) / gcd(sigma(n),n+1).

Original entry on oeis.org

1, 1, 1, 7, 1, 12, 1, 5, 13, 18, 1, 28, 1, 8, 3, 31, 1, 39, 1, 2, 16, 36, 1, 12, 31, 14, 10, 56, 1, 72, 1, 21, 24, 54, 4, 91, 1, 20, 7, 90, 1, 96, 1, 28, 39, 72, 1, 124, 57, 31, 18, 98, 1, 24, 9, 40, 40, 90, 1, 168, 1, 32, 13, 127, 14, 144, 1, 42, 48, 144, 1, 195, 1, 38, 31, 20, 16, 168, 1, 62, 121, 126, 1, 224, 54, 44
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2020

Keywords

Crossrefs

Cf. A000203, A339964, A339966 (denominators).
Cf. A017665.
Cf. also A160595.

Programs

  • Mathematica
    Table[DivisorSigma[1, n]/GCD[DivisorSigma[1, n], n + 1], {n, 80}] (* Wesley Ivan Hurt, Oct 10 2021 *)
  • PARI
    A339965(n) = sigma(n)/(gcd(sigma(n),n+1));

Formula

a(n) = A000203(n) / A339964(n).
a(n) = numerator(sigma(n)/(n+1)). - Michel Marcus, Jan 07 2023

A342917 a(n) = A001615(n) / gcd(1+n, A001615(n)), where A001615 is Dedekind psi, n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 1, 1, 6, 1, 12, 1, 4, 6, 18, 1, 24, 1, 8, 3, 24, 1, 36, 1, 12, 16, 36, 1, 48, 15, 14, 9, 48, 1, 72, 1, 16, 24, 54, 4, 72, 1, 20, 7, 72, 1, 96, 1, 8, 36, 72, 1, 96, 28, 30, 18, 84, 1, 108, 9, 32, 40, 90, 1, 144, 1, 32, 3, 96, 14, 144, 1, 36, 48, 144, 1, 144, 1, 38, 30, 120, 16, 168, 1, 16, 54, 126, 1, 192, 54, 44, 15, 144
Offset: 1

Views

Author

Antti Karttunen, Mar 29 2021

Keywords

Comments

The scatter plot shows two distinct "fans" separated by a gap. Why?

Crossrefs

Cf. also A160595.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A342917(n) = { my(u=A001615(n)); (u/gcd(1+n,u)); };

Formula

a(n) = A001615(n) / A342915(n) = A001615(n) / gcd(1+n, A001615(n)).

A339871 Number of primes p for which the p-adic valuation of phi(n) exceeds the p-adic valuation of n-1, with a(1) = 0 by convention.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 0, 2, 2, 1, 0, 2, 0, 2, 2, 2, 0, 1, 1, 2, 1, 1, 0, 2, 2, 2, 1, 2, 0, 1, 0, 3, 2, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 2, 2, 2, 2, 2, 0, 1, 1, 2, 0, 2, 1, 3, 2, 2, 0, 2, 1, 2, 2, 2, 2, 1, 0, 3, 3, 2, 0, 1, 0, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2020

Keywords

Crossrefs

Programs

  • PARI
    A339871(n) = if(1==n,0,my(s=0); for(k=1,n,my(p=prime(k)); if(valuation(eulerphi(n),p)>valuation(n-1,p), s++)); (s));
    
  • PARI
    A339871(n) = if(1==n,0,my(f=factor(eulerphi(n))); sum(i=1,#f~,f[i,2]>valuation(n-1,f[i,1])));
    
  • PARI
    A339871(n) = omega(eulerphi(n)/gcd(n-1,eulerphi(n)));

Formula

a(n) = A001221(A160595(n)).
a(n) <= A055734(n).

A339872 Index k of the least prime(k) such that prime(k)-adic valuation of phi(n) exceeds the prime(k)-adic valuation of n-1, or 0 if no such k exists (for example, when n = 1 or a prime).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 2, 1, 0, 1, 3, 1, 2, 1, 0, 1, 0, 1, 3, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 4, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 5, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2020

Keywords

Crossrefs

Programs

  • PARI
    A339872(n) = if(1==n,0,for(k=1,n,my(p=prime(k)); if(valuation(eulerphi(n),p)>valuation(n-1,p), return(k))); (0));
    
  • PARI
    A339872(n) = if(1==n,0,my(f=factor(eulerphi(n))); for(i=1,#f~,if(f[i,2]>valuation(n-1,f[i,1]), return(primepi(f[i,1])))); (0));
    
  • PARI
    A339872(n) = { my(t=eulerphi(n), x=t/gcd(n-1,t)); if(1==x,0,primepi(factor(x)[1, 1])); };

Formula

a(n) = A055396(A160595(n)).

A195418 a(n) = phi(C(n)) / gcd(C(n)-1, phi(C(n))), where C(n) is the n-th Cullen number.

Original entry on oeis.org

1, 1, 3, 5, 3, 33, 5, 33, 341, 1045, 189, 1299, 891, 4437, 9477, 581, 3855, 105525, 27825, 23751, 173043, 10531345, 56511, 2386125, 380955, 256861, 24926139, 5108467, 32397379, 930343095, 930291, 36512775
Offset: 0

Views

Author

Alonso del Arte, Sep 20 2011

Keywords

Comments

When C(n) is prime (or 1), then a(n) = 1; that is, n is in A005849.
On the penultimate page of their paper, Grau and Luca ask for "a good (large) lower bound on this quantity which is valid for all n and which tends to infinity with n."

Examples

			a(2) = 3 because the second Cullen number is 9; phi(9) = 6, therefore 6/gcd(8, 6) = 6/2 = 3.
		

Crossrefs

Programs

  • Mathematica
    cullen[n_] := n(2^n) + 1; Table[EulerPhi[cullen[n]]/GCD[cullen[n] - 1, EulerPhi[cullen[n]]], {n, 0, 39}]
  • PARI
    a(n)=my(C=n<Charles R Greathouse IV, Feb 05 2013

A340093 Composite numbers k such that A003958(k) divides k-1.

Original entry on oeis.org

4, 8, 9, 16, 32, 64, 81, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 180225, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Comments

Composite numbers k for which A340082(k) = 1.
Are there any other non-powers of 2 apart from 9, 81, 180225 (= 3^4 * 5^2 * 89) present?
If there are no squarefree numbers in this sequence, then Lehmer's Totient problem has no composite solutions.

Crossrefs

Cf. A000079 (subsequence from its term a(2)=4 onward).
Cf. also A160595.

Programs

  • Mathematica
    f[n_] := Times @@ (((fct = FactorInteger[n])[[;; , 1]] - 1)^fct[[;; , 2]]); Select[Range[10^7], CompositeQ[#] && Divisible[# - 1, f[#]] &] (* Amiram Eldar, Dec 31 2020 *)
  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    isA340093(n) = ((n>1)&&!isprime(n)&&!((n-1)%A003958(n)));

Extensions

More terms from Amiram Eldar, Dec 31 2020
Previous Showing 11-20 of 20 results.