cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A160788 G.f.: (1+62*x+561*x^2+1014*x^3+449*x^4+48*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 69, 1023, 6761, 28673, 92189, 245463, 570193, 1194577, 2308405, 4180287, 7177017, 11785073, 18634253, 28523447, 42448545, 61632481, 87557413, 121999039, 167063049, 225223713, 299364605, 392821463, 509427185, 653558961
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [89*n^6/30 +151*n^5/15 +56*n^4/3 +19*n^3+371*n^2/30 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
    
  • Mathematica
    CoefficientList[Series[(1 + 62*x + 561*x^2 + 1014*x^3 + 449*x^4 + 48*x^5 + x^6)/(1 - x)^7, {x, 0, 50}], x] (* G. C. Greubel, Apr 26 2018 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,69,1023,6761,28673,92189,245463},30] (* Harvey P. Dale, Aug 03 2021 *)
  • PARI
    x='x+O('x^30); Vec((1+62*x+561*x^2+1014*x^3+449*x^4+48*x^5 +x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018

Formula

a(n) = 89*n^6/30 +151*n^5/15 +56*n^4/3 +19*n^3+371*n^2/30 +74*n/15 +1. - R. J. Mathar, Sep 11 2011

A160815 Expansion of (1+62*x+562*x^2+1023*x^3+458*x^4+49*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 69, 1024, 6777, 28773, 92589, 246688, 573329, 1201633, 2322805, 4207512, 7225417, 11866869, 18766749, 28730472, 42762145, 62094881, 88223269, 122938000, 168362649, 226992613, 301736205, 395957904, 513523761, 658848961
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [539*n^6/180 +151*n^5/15 +335*n^4/18 +19*n^3 +2231*n^2/180 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
    
  • Mathematica
    CoefficientList[Series[(1+62*x+562*x^2+1023*x^3+458*x^4+49*x^5+x^6)/(1-x)^7, {x, 0, 50}], x] (* G. C. Greubel, Apr 26 2018 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,69,1024,6777,28773,92589,246688},30] (* Harvey P. Dale, Sep 16 2019 *)
  • PARI
    x='x+O('x^30); Vec((1+62*x+562*x^2+1023*x^3+458*x^4+49*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018

Formula

a(n) = 539*n^6/180 +151*n^5/15 +335*n^4/18 +19*n^3 +2231*n^2/180 +74*n/15 +1. - R. J. Mathar, Sep 11 2011

A160816 Expansion of (1+62*x+563*x^2+1032*x^3+467*x^4+50*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 69, 1025, 6793, 28873, 92989, 247913, 576465, 1208689, 2337205, 4234737, 7273817, 11948665, 18899245, 28937497, 43075745, 62557281, 88889125, 123876961, 169662249, 228761513, 304107805, 399094345, 517620337, 664138961
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [136*n^6/45 +151*n^5/15 +167*n^4/9 +19*n^3+559*n^2/45 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
    
  • Mathematica
    CoefficientList[Series[(1+62*x+563*x^2+1032*x^3+467*x^4 +50*x^5+x^6)/(1-x)^7, {x, 0, 50}], x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 69, 1025, 6793, 28873, 92989, 247913}, 50] (* G. C. Greubel, Apr 26 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+62*x+563*x^2+1032*x^3+467*x^4 +50*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018

Formula

a(n) = 136*n^6/45 +151*n^5/15 +167*n^4/9 +19*n^3+559*n^2/45 +74*n/15 +1. - R. J. Mathar, Sep 17 2011

A160817 Expansion of (1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 69, 1026, 6809, 28973, 93389, 249138, 579601, 1215745, 2351605, 4261962, 7322217, 12030461, 19031741, 29144522, 43389345, 63019681, 89554981, 124815922, 170961849, 230530413, 306479405, 402230786, 521716913, 669428961
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [61*n^6/20 +151*n^5/15 +37*n^4/2 +19*n^3 +249*n^2/20 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
    
  • Mathematica
    CoefficientList[Series[(1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5 +x^6)/(1-x)^7, {x, 0, 50}], x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 69, 1026, 6809, 28973, 93389, 249138}, 50] (* G. C. Greubel, Apr 26 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018

Formula

a(n) = 61*n^6/20 +151*n^5/15 +37*n^4/2 +19*n^3 +249*n^2/20 +74*n/15 +1. - R. J. Mathar, Sep 17 2011

A160829 Expansion of (1 + 44*x + 337*x^2 + 612*x^3 + 305*x^4 + 40*x^5 + x^6)/(1 - x)^7.

Original entry on oeis.org

1, 51, 673, 4287, 17931, 57321, 152251, 353333, 740077, 1430311, 2590941, 4450051, 7310343, 11563917, 17708391, 26364361, 38294201, 54422203, 75856057, 103909671, 140127331, 186309201, 244538163, 317207997, 407052901, 517178351
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [(1/36)*(36 + 174*n + 391*n^2 + 513*n^3 + 442*n^4 + 213*n^5 + 67*n^6): n in [0..30]]; // G. C. Greubel, Apr 28 2018
  • Maple
    seq(coeff(series((1+44*x+337*x^2+612*x^3+305*x^4+40*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,51,673,4287,17931,57321, 152251},30] (* or *) CoefficientList[Series[ (1+44x+337x^2+612x^3+ 305x^4+ 40x^5+x^6)/(1-x)^7,{x,0,30}],x] (* Harvey P. Dale, Jun 21 2011 *)
  • PARI
    x='x+O('x^99); Vec((1+44*x+337*x^2+612*x^3+305*x^4+40*x^5+x^6)/(1-x)^7) \\ Altug Alkan, Aug 16 2017
    

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7), with a(0)=1, a(1)=51, a(2)=673, a(3)=4287, a(4)=17931, a(5)=57321, a(6)=152251. - Harvey P. Dale, Jun 21 2011
a(n) = (1/36)*(36 + 174*n + 391*n^2 + 513*n^3 + 442*n^4 + 213*n^5 + 67*n^6). - Harvey P. Dale, Jun 21 2011, corrected by Eric Rowland, Aug 15 2017

A160831 G.f.: (1+62*x+570*x^2+1095*x^3+530*x^4+57*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 69, 1032, 6905, 29573, 95789, 256488, 598417, 1258081, 2438005, 4425312, 7612617, 12521237, 19826717, 30386672, 45270945, 65794081, 93550117, 130449688, 178759449, 241143813, 320709005, 421049432, 546296369, 701168961
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [193*n^6/60 +151*n^5/15 +109*n^4/6 +19*n^3 +757*n^2/60 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 19 2011
    
  • Mathematica
    Table[193*n^6/60 +151*n^5/15 +109*n^4/6 +19*n^3 +757*n^2/60 +74*n/15 +1, {n,0,30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 69, 1032, 6905, 29573, 95789, 256488}, 30] (* G. C. Greubel, Apr 28 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+62*x+570*x^2+1095*x^3+530*x^4+57*x^5 +x^6 )/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 193*n^6/60 +151*n^5/15 +109*n^4/6 +19*n^3 +757*n^2/60 +74*n/15 +1. - R. J. Mathar, Sep 17 2011

A160833 G.f.: (1+62*x+569*x^2+1086*x^3+521*x^4+56*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 69, 1031, 6889, 29473, 95389, 255263, 595281, 1251025, 2423605, 4398087, 7564217, 12439441, 19694221, 30179647, 44957345, 65331681, 92884261, 129510727, 177459849, 239374913, 318337405, 417912991, 542199793, 695878961
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n+444)/90: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
    
  • Mathematica
    Table[1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n+444)/90, {n,0,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 69, 1031, 6889, 29473, 95389, 255263}, 30] (* G. C. Greubel, Apr 28 2018 *)
  • PARI
    for(n=0, 30, print1(1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n +444)/90, ", ")) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n+444)/90. - R. J. Mathar, Sep 17 2011

A160834 Expansion of: (1+62*x+567*x^2+1068*x^3+503*x^4+54*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 69, 1029, 6857, 29273, 94589, 252813, 589009, 1236913, 2394805, 4343637, 7467417, 12275849, 19429229, 29765597, 44330145, 64406881, 91552549, 127632805, 174860649, 235837113, 313594205, 411640109, 534006641, 685298961
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [1+n*(n+1)*(47*n^4+104*n^3+171*n^2+114*n+74)/15: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
    
  • Maple
    A160834:=n->1+n*(n+1)*(47*n^4+104*n^3+171*n^2+114*n+74)/15: seq(A160834(n), n=0..30); # Wesley Ivan Hurt, Mar 04 2014
  • Mathematica
    Table[1 + n*(n + 1)*(47*n^4 + 104*n^3 + 171*n^2 + 114*n + 74)/15, {n, 0, 30}] (* Wesley Ivan Hurt, Mar 04 2014 *)
  • PARI
    for(n=0, 30, print1(1+n*(n+1)*(47*n^4+104*n^3+171*n^2+114*n +74)/15, ", ")) \\ G. C. Greubel, Apr 28 2018

Formula

G.f.: (1+62*x+567*x^2+1068*x^3+503*x^4+54*x^5+x^6)/(1-x)^7.
a(n) = 1+n*(n+1)*(47*n^4+104*n^3+171*n^2+114*n+74)/15. - R. J. Mathar, Sep 17 2011
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Wesley Ivan Hurt, Oct 01 2021

A160835 G.f.: (1+44*x+339*x^2+630*x^3+323*x^4+42*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 51, 675, 4319, 18131, 58121, 154701, 359605, 754189, 1459111, 2645391, 4546851, 7473935, 11828909, 18122441, 26991561, 39219001, 55753915, 77733979, 106508871, 143665131, 191052401, 250811045, 325401149, 417632901, 530698351
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
    
  • Mathematica
    Table[1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12, {n,0,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 51, 675, 4319, 18131, 58121, 154701}, 30] (* G. C. Greubel, Apr 28 2018 *)
  • PARI
    for(n=0,30, print1(1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12, ", ")) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12. - R. J. Mathar, Sep 17 2011

A160836 G.f.: (1+62*x+565*x^2+1050*x^3+485*x^4+52*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 69, 1027, 6825, 29073, 93789, 250363, 582737, 1222801, 2366005, 4289187, 7370617, 12112257, 19164237, 29351547, 43702945, 63482081, 90220837, 125754883, 172261449, 232299313, 308851005, 405367227, 525813489, 674718961
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [1 +n*(n+1)*(277*n^4+629*n^3+1031*n^2+679*n+444)/90: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
    
  • Mathematica
    CoefficientList[Series[(1+62x+565x^2+1050x^3+485x^4+52x^5+x^6)/(1-x)^7, {x,0,30}],x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,69,1027,6825,29073,93789,250363},30] (* Harvey P. Dale, Sep 01 2015 *)
  • PARI
    x='x+O('x^30); Vec((1+62*x+565*x^2+1050*x^3+485*x^4+52*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 1 +n*(n+1)*(277*n^4+629*n^3+1031*n^2+679*n+444)/90. - R. J. Mathar, Sep 17 2011
a(0)=1, a(1)=69, a(2)=1027, a(3)=6825, a(4)=29073, a(5)=93789, a(6)=250363, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+ 21*a(n-5)- 7*a(n-6)+a(n-7). - Harvey P. Dale, Sep 01 2015
Previous Showing 11-20 of 29 results. Next