A160788
G.f.: (1+62*x+561*x^2+1014*x^3+449*x^4+48*x^5+x^6)/(1-x)^7.
Original entry on oeis.org
1, 69, 1023, 6761, 28673, 92189, 245463, 570193, 1194577, 2308405, 4180287, 7177017, 11785073, 18634253, 28523447, 42448545, 61632481, 87557413, 121999039, 167063049, 225223713, 299364605, 392821463, 509427185, 653558961
Offset: 0
-
[89*n^6/30 +151*n^5/15 +56*n^4/3 +19*n^3+371*n^2/30 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
-
CoefficientList[Series[(1 + 62*x + 561*x^2 + 1014*x^3 + 449*x^4 + 48*x^5 + x^6)/(1 - x)^7, {x, 0, 50}], x] (* G. C. Greubel, Apr 26 2018 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,69,1023,6761,28673,92189,245463},30] (* Harvey P. Dale, Aug 03 2021 *)
-
x='x+O('x^30); Vec((1+62*x+561*x^2+1014*x^3+449*x^4+48*x^5 +x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018
A160815
Expansion of (1+62*x+562*x^2+1023*x^3+458*x^4+49*x^5+x^6)/(1-x)^7.
Original entry on oeis.org
1, 69, 1024, 6777, 28773, 92589, 246688, 573329, 1201633, 2322805, 4207512, 7225417, 11866869, 18766749, 28730472, 42762145, 62094881, 88223269, 122938000, 168362649, 226992613, 301736205, 395957904, 513523761, 658848961
Offset: 0
-
[539*n^6/180 +151*n^5/15 +335*n^4/18 +19*n^3 +2231*n^2/180 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
-
CoefficientList[Series[(1+62*x+562*x^2+1023*x^3+458*x^4+49*x^5+x^6)/(1-x)^7, {x, 0, 50}], x] (* G. C. Greubel, Apr 26 2018 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,69,1024,6777,28773,92589,246688},30] (* Harvey P. Dale, Sep 16 2019 *)
-
x='x+O('x^30); Vec((1+62*x+562*x^2+1023*x^3+458*x^4+49*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018
A160816
Expansion of (1+62*x+563*x^2+1032*x^3+467*x^4+50*x^5+x^6)/(1-x)^7.
Original entry on oeis.org
1, 69, 1025, 6793, 28873, 92989, 247913, 576465, 1208689, 2337205, 4234737, 7273817, 11948665, 18899245, 28937497, 43075745, 62557281, 88889125, 123876961, 169662249, 228761513, 304107805, 399094345, 517620337, 664138961
Offset: 0
-
[136*n^6/45 +151*n^5/15 +167*n^4/9 +19*n^3+559*n^2/45 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
-
CoefficientList[Series[(1+62*x+563*x^2+1032*x^3+467*x^4 +50*x^5+x^6)/(1-x)^7, {x, 0, 50}], x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 69, 1025, 6793, 28873, 92989, 247913}, 50] (* G. C. Greubel, Apr 26 2018 *)
-
x='x+O('x^30); Vec((1+62*x+563*x^2+1032*x^3+467*x^4 +50*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018
A160817
Expansion of (1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5+x^6)/(1-x)^7.
Original entry on oeis.org
1, 69, 1026, 6809, 28973, 93389, 249138, 579601, 1215745, 2351605, 4261962, 7322217, 12030461, 19031741, 29144522, 43389345, 63019681, 89554981, 124815922, 170961849, 230530413, 306479405, 402230786, 521716913, 669428961
Offset: 0
-
[61*n^6/20 +151*n^5/15 +37*n^4/2 +19*n^3 +249*n^2/20 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
-
CoefficientList[Series[(1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5 +x^6)/(1-x)^7, {x, 0, 50}], x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 69, 1026, 6809, 28973, 93389, 249138}, 50] (* G. C. Greubel, Apr 26 2018 *)
-
x='x+O('x^30); Vec((1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018
A160829
Expansion of (1 + 44*x + 337*x^2 + 612*x^3 + 305*x^4 + 40*x^5 + x^6)/(1 - x)^7.
Original entry on oeis.org
1, 51, 673, 4287, 17931, 57321, 152251, 353333, 740077, 1430311, 2590941, 4450051, 7310343, 11563917, 17708391, 26364361, 38294201, 54422203, 75856057, 103909671, 140127331, 186309201, 244538163, 317207997, 407052901, 517178351
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- J. A. De Loera, D. C. Haws and M. Koppe, Ehrhart Polynomials of Matroid Polytopes and Polymatroids, arXiv:0710.4346 [math.CO], 2007; Discrete Comput. Geom., 42 (2009), 670-702.
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
-
[(1/36)*(36 + 174*n + 391*n^2 + 513*n^3 + 442*n^4 + 213*n^5 + 67*n^6): n in [0..30]]; // G. C. Greubel, Apr 28 2018
-
seq(coeff(series((1+44*x+337*x^2+612*x^3+305*x^4+40*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
-
LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,51,673,4287,17931,57321, 152251},30] (* or *) CoefficientList[Series[ (1+44x+337x^2+612x^3+ 305x^4+ 40x^5+x^6)/(1-x)^7,{x,0,30}],x] (* Harvey P. Dale, Jun 21 2011 *)
-
x='x+O('x^99); Vec((1+44*x+337*x^2+612*x^3+305*x^4+40*x^5+x^6)/(1-x)^7) \\ Altug Alkan, Aug 16 2017
A160831
G.f.: (1+62*x+570*x^2+1095*x^3+530*x^4+57*x^5+x^6)/(1-x)^7.
Original entry on oeis.org
1, 69, 1032, 6905, 29573, 95789, 256488, 598417, 1258081, 2438005, 4425312, 7612617, 12521237, 19826717, 30386672, 45270945, 65794081, 93550117, 130449688, 178759449, 241143813, 320709005, 421049432, 546296369, 701168961
Offset: 0
-
[193*n^6/60 +151*n^5/15 +109*n^4/6 +19*n^3 +757*n^2/60 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 19 2011
-
Table[193*n^6/60 +151*n^5/15 +109*n^4/6 +19*n^3 +757*n^2/60 +74*n/15 +1, {n,0,30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 69, 1032, 6905, 29573, 95789, 256488}, 30] (* G. C. Greubel, Apr 28 2018 *)
-
x='x+O('x^30); Vec((1+62*x+570*x^2+1095*x^3+530*x^4+57*x^5 +x^6 )/(1-x)^7) \\ G. C. Greubel, Apr 28 2018
A160833
G.f.: (1+62*x+569*x^2+1086*x^3+521*x^4+56*x^5+x^6)/(1-x)^7.
Original entry on oeis.org
1, 69, 1031, 6889, 29473, 95389, 255263, 595281, 1251025, 2423605, 4398087, 7564217, 12439441, 19694221, 30179647, 44957345, 65331681, 92884261, 129510727, 177459849, 239374913, 318337405, 417912991, 542199793, 695878961
Offset: 0
-
[1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n+444)/90: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
-
Table[1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n+444)/90, {n,0,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 69, 1031, 6889, 29473, 95389, 255263}, 30] (* G. C. Greubel, Apr 28 2018 *)
-
for(n=0, 30, print1(1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n +444)/90, ", ")) \\ G. C. Greubel, Apr 28 2018
A160834
Expansion of: (1+62*x+567*x^2+1068*x^3+503*x^4+54*x^5+x^6)/(1-x)^7.
Original entry on oeis.org
1, 69, 1029, 6857, 29273, 94589, 252813, 589009, 1236913, 2394805, 4343637, 7467417, 12275849, 19429229, 29765597, 44330145, 64406881, 91552549, 127632805, 174860649, 235837113, 313594205, 411640109, 534006641, 685298961
Offset: 0
-
[1+n*(n+1)*(47*n^4+104*n^3+171*n^2+114*n+74)/15: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
-
A160834:=n->1+n*(n+1)*(47*n^4+104*n^3+171*n^2+114*n+74)/15: seq(A160834(n), n=0..30); # Wesley Ivan Hurt, Mar 04 2014
-
Table[1 + n*(n + 1)*(47*n^4 + 104*n^3 + 171*n^2 + 114*n + 74)/15, {n, 0, 30}] (* Wesley Ivan Hurt, Mar 04 2014 *)
-
for(n=0, 30, print1(1+n*(n+1)*(47*n^4+104*n^3+171*n^2+114*n +74)/15, ", ")) \\ G. C. Greubel, Apr 28 2018
A160835
G.f.: (1+44*x+339*x^2+630*x^3+323*x^4+42*x^5+x^6)/(1-x)^7.
Original entry on oeis.org
1, 51, 675, 4319, 18131, 58121, 154701, 359605, 754189, 1459111, 2645391, 4546851, 7473935, 11828909, 18122441, 26991561, 39219001, 55753915, 77733979, 106508871, 143665131, 191052401, 250811045, 325401149, 417632901, 530698351
Offset: 0
-
[1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
-
Table[1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12, {n,0,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 51, 675, 4319, 18131, 58121, 154701}, 30] (* G. C. Greubel, Apr 28 2018 *)
-
for(n=0,30, print1(1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12, ", ")) \\ G. C. Greubel, Apr 28 2018
A160836
G.f.: (1+62*x+565*x^2+1050*x^3+485*x^4+52*x^5+x^6)/(1-x)^7.
Original entry on oeis.org
1, 69, 1027, 6825, 29073, 93789, 250363, 582737, 1222801, 2366005, 4289187, 7370617, 12112257, 19164237, 29351547, 43702945, 63482081, 90220837, 125754883, 172261449, 232299313, 308851005, 405367227, 525813489, 674718961
Offset: 0
-
[1 +n*(n+1)*(277*n^4+629*n^3+1031*n^2+679*n+444)/90: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
-
CoefficientList[Series[(1+62x+565x^2+1050x^3+485x^4+52x^5+x^6)/(1-x)^7, {x,0,30}],x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,69,1027,6825,29073,93789,250363},30] (* Harvey P. Dale, Sep 01 2015 *)
-
x='x+O('x^30); Vec((1+62*x+565*x^2+1050*x^3+485*x^4+52*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018
Comments