cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A160837 G.f.: (1+38*x+262*x^2+475*x^3+254*x^4+37*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 45, 556, 3457, 14317, 45565, 120772, 280001, 586225, 1132813, 2052084, 3524929, 5791501, 9162973, 14034364, 20898433, 30360641, 43155181, 60162076, 82425345, 111172237, 147833533, 194064916, 251769409, 323120881, 410588621, 516962980
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [1+ n*(n+1)*(89*n^4+183*n^3+427*n^2+333*n+288)/60: n in [0..30]]; // Vincenzo Librandi, Sep 19 2011
    
  • Mathematica
    CoefficientList[Series[(1+38x+262x^2+475x^3+254x^4+37x^5+x^6)/(1-x)^7, {x,0,40}], x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1, 45, 556,3457,14317,45565,120772}, 40] (* Harvey P. Dale, Nov 27 2016 *)
  • PARI
    x='x+O('x^30); Vec((1+38*x+262*x^2+475*x^3+254*x^4+37*x^5+x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

Formula

From R. J. Mathar, Dec 16 2009: (Start)
a(n) = 1+24/5*n+38/3*n^3+207/20*n^2+61/6*n^4+68/15*n^5+89/60*n^6.
a(n) = 1+ n*(n+1)*(89*n^4+183*n^3+427*n^2+333*n+288)/60. (End)

A160838 G.f.: (1+38*x+263*x^2+484*x^3+263*x^4+38*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 45, 557, 3473, 14417, 45965, 121997, 283137, 593281, 1147213, 2079309, 3573329, 5873297, 9295469, 14241389, 21212033, 30823041, 43821037, 61101037, 83724945, 112941137, 150205133, 197201357, 255865985, 328410881, 417348621, 525518605
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [68*n^6/45 +68*n^5/15 +91*n^4/9 +38*n^3/3 +467*n^2/45 +24*n/5 +1: n in [0..30]]; // Vincenzo Librandi, Sep 19 2011
    
  • Mathematica
    CoefficientList[Series[(1+38x+263x^2+484x^3+263x^4+38x^5+x^6)/(1-x)^7, {x,0,30}], x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,45, 557, 3473,14417,45965,121997}, 30] (* Harvey P. Dale, Sep 17 2011 *)
  • PARI
    x='x+O('x^30); Vec((1+38*x+263*x^2+484*x^3+263*x^4+38*x^5+x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 68*n^6/45 +68*n^5/15 +91*n^4/9 +38*n^3/3 +467*n^2/45 +24*n/5 +1. - R. J. Mathar, Sep 11 2011
a(0)=1, a(1)=45, a(2)=557, a(3)=3473, a(4)=14417, a(5)=45965, a(6)=121997, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)- 7*a(n-6)+a(n-7). - Harvey P. Dale, Sep 17 2011

A160839 Expansion of (78+1116*x+3492*x^2+3237*x^3+927*x^4+72*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

78, 1662, 13488, 65481, 231486, 660921, 1619353, 3537997, 7072138, 13168476, 23141394, 38758149, 62332986, 96830175, 145975971, 214379497, 307662550, 432598330, 597259092, 811172721, 1085488230, 1433150181, 1869082029
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [8923*n^6/720 +18691*n^5/240 +35375*n^4/144 +7219*n^3/16 +178361*n^2/360 +9043*n/30 + 78: n in [0..30]]; // Vincenzo Librandi, Sep 19 2011
    
  • Maple
    seq(coeff(series((78+1116*x+3492*x^2+3237*x^3+927*x^4+72*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
  • Mathematica
    Table[8923*n^6/720 +18691*n^5/240 +35375*n^4/144 +7219*n^3/16 +178361*n^2/360 +9043*n/30 + 78, {n, 0, 30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1}, {78, 1662, 13488, 65481, 231486, 660921, 1619353}, 30] (* G. C. Greubel, Apr 28 2018 *)
  • PARI
    x='x+O('x^30); Vec((78+1116*x+3492*x^2+3237*x^3+927*x^4 +72*x^5 +x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 8923*n^6/720 +18691*n^5/240 +35375*n^4/144 +7219*n^3/16 +178361*n^2/360 +9043*n/30 + 78. - R. J. Mathar, Sep 11 2011

A160840 Expansion of (1+147*x+1230*x^2+1885*x^3+714*x^4+63*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 154, 2287, 14695, 60907, 192493, 505912, 1163401, 2417905, 4642048, 8361145, 14290255, 23375275, 36838075, 56225674, 83463457, 120912433, 171430534, 238437955, 325986535, 438833179, 582517321, 763442428, 988961545, 1267466881
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [449*n^6/80 +1803*n^5/80 +713*n^4/16 +745*n^3/16 +1053*n^2/40 +37*n/5 +1: n in [0..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Maple
    seq(coeff(series((1+147*x+1230*x^2+1885*x^3+714*x^4+63*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 154, 2287, 14695, 60907, 192493, 505912}, 30] (* G. C. Greubel, Apr 28 2018 *)
    CoefficientList[Series[(1+147x+1230x^2+1885x^3+714x^4+63x^5+x^6)/(1-x)^7,{x,0,30}],x] (* Harvey P. Dale, Dec 30 2022 *)
  • PARI
    x='x+O('x^30); Vec((1+147*x+1230*x^2+1885*x^3+714*x^4 +63*x^5 +x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 449*n^6/80 +1803*n^5/80 +713*n^4/16 +745*n^3/16 +1053*n^2/40 +37*n/5 +1. - R. J. Mathar, Sep 11 2011

A160841 Expansion of (1+147*x+1230*x^2+1915*x^3+744*x^4+66*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 154, 2287, 14725, 61147, 193546, 509293, 1172305, 2438317, 4684258, 8441731, 14434597, 23620663, 37237474, 56852209, 84415681, 122320441, 173462986, 241310071, 329969125, 444262771, 589807450, 773096149, 1001585233
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [1+3*n*(n+1)*(38*n^4+112*n^3+183*n^2+127*n+50)/20: n in [0..30]]; // Vincenzo Librandi, Sep 19 2011
    
  • Maple
    seq(coeff(series((1+147*x+1230*x^2+1915*x^3+744*x^4+66*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
  • Mathematica
    CoefficientList[Series[(1+147x+1230x^2+1915x^3+744x^4+66x^5+x^6)/(1-x)^7, {x,0,30}], x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1, 154, 2287,14725,61147,193546,509293},30] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    x='x+O('x^30); Vec((1+147*x+1230*x^2+1915*x^3+744*x^4+66*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 1+3*n*(n+1)*(38*n^4+112*n^3+183*n^2+127*n+50)/20. - R. J. Mathar, Sep 17 2011
a(0)=1, a(1)=154, a(2)=2287, a(3)=14725, a(4)=61147, a(5)=193546, a(6)=509293, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)- 7*a(n-6)+ a(n-7). - Harvey P. Dale, Feb 11 2015

A160853 Expansion of (1+147*x+1230*x^2+1925*x^3+754*x^4+67*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 154, 2287, 14735, 61227, 193897, 510420, 1175273, 2445121, 4698328, 8468593, 14482711, 23702459, 37370607, 57061054, 84733089, 122789777, 174140470, 242267443, 331296655, 446072635, 592237493, 776314056, 1005793129
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [1 +n*(n+1)*(1375*n^4+4022*n^3+6573*n^2+4582*n+1808)/240: n in [0..30]]; // Vincenzo Librandi, Sep 20 2011
    
  • Maple
    seq(coeff(series((1+147*x+1230*x^2+1925*x^3+754*x^4+67*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 154, 2287, 14735, 61227, 193897, 510420}, 40] (* G. C. Greubel, Apr 28 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+147*x+1230*x^2+1925*x^3+754*x^4+67*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 1 +n*(n+1)*(1375*n^4+4022*n^3+6573*n^2+4582*n+1808)/240. - R. J. Mathar, Sep 17 2011

A160854 Expansion of (1+147*x+1098*x^2+1638*x^3+632*x^4+59*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 154, 2155, 13524, 55400, 173911, 455120, 1043547, 2164267, 4148584, 7463281, 12743446, 20828874, 32804045, 50041678, 74249861, 107522757, 152394886, 211898983, 289627432, 389797276, 517318803, 677867708, 877960831, 1125035471
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [149*n^6/30 +81*n^5/4 +337*n^4/8 +142*n^3/3 +3529*n^2/120 +107 *n/12 +1: n in [0..30]]; // Vincenzo Librandi, Sep 20 2011
    
  • Maple
    seq(coeff(series((1+147*x+1098*x^2+1638*x^3+632*x^4+59*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 154, 2155, 13524, 55400, 173911, 455120}, 30] (* G. C. Greubel, Apr 28 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+147*x+1098*x^2+1638*x^3+632*x^4+59*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 149*n^6/30 +81*n^5/4 +337*n^4/8 +142*n^3/3 +3529*n^2/120 +107*n/12 +1. - R. J. Mathar, Sep 17 2011

A160863 Expansion of (1+147*x+1142*x^2+1717*x^3+656*x^4+60*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 154, 2199, 13911, 57209, 179988, 471675, 1082509, 2246545, 4308382, 7753615, 13243011, 21650409, 34104344, 52033395, 77215257, 111829537, 158514274, 220426183, 301304623, 405539289, 538241628, 705319979, 913558437, 1170699441
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [931*n^6/180 +1261*n^5/60 +1547*n^4/36 +565*n^3/12 +1276*n^2/45 +42*n/5+1: n in [0..30]]; // Vincenzo Librandi, Sep 20 2011
    
  • Maple
    seq(coeff(series((1+147*x+1142*x^2+1717*x^3+656*x^4+60*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 154, 2199, 13911, 57209, 179988, 471675}, 30] (* G. C. Greubel, Apr 28 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+147*x+1142*x^2+1717*x^3+656*x^4+60*x^5+ x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 931*n^6/180 +1261*n^5/60 +1547*n^4/36 +565*n^3/12 +1276*n^2/45 +42*n/5 +1. - R. J. Mathar, Sep 17 2011

A355010 Array read by ascending antidiagonals: T(n, k) is the number of n-core partitions with k corners.

Original entry on oeis.org

1, 3, 1, 6, 5, 1, 10, 16, 7, 1, 15, 40, 31, 9, 1, 21, 85, 105, 51, 11, 1, 28, 161, 295, 219, 76, 13, 1, 36, 280, 721, 771, 396, 106, 15, 1, 45, 456, 1582, 2331, 1681, 650, 141, 17, 1, 55, 705, 3186, 6244, 6083, 3235, 995, 181, 19, 1, 66, 1045, 5985, 15156, 19348, 13663, 5685, 1445, 226, 21, 1
Offset: 2

Views

Author

Stefano Spezia, Jun 15 2022

Keywords

Comments

T(n, k) is also equal to the number of cornerless Motzkin paths of length 2*k + n - 1 with n - 1 flat steps (see Theorem 3.3 and Proposition 3.4 at pp. 13 - 14 in Cho et al.).
In proposition 3.4 in Cho et al., the Narayana number is defined as N(k, i) = binomial(k, i)*binomial(k, i-1)/k, unlike A001263.

Examples

			The array begins:
    1,  1,   1,   1,    1,    1,    1,    1, ...
    3,  5,   7,   9,   11,   13,   15,   17, ...
    6, 16,  31,  51,   76,  106,  141,  181, ...
   10, 40, 105, 219,  396,  650,  995, 1445, ...
   15, 85, 295, 771, 1681, 3235, 5685, 9325, ...
   ...
		

Crossrefs

Cf. A000012 (n = 2), A001263, A005408 (n = 3), A005891 (n = 4), A006007, A063490 (n = 5), A160747 (n = 6), A161680 (k = 1), A355011.

Programs

  • Mathematica
    T[n_,k_]:=Sum[Binomial[k,i]Binomial[k,i-1]Binomial[n+2(k-i),2k]/k,{i,Min[k,Floor[n/2]]}]; Flatten[Table[T[n-k+1,k],{n,2,12},{k,1,n-1}]]

Formula

T(n, k) = Sum_{i=1..min(k,floor(n/2))} N(k, i)*binomial(n+2*(k-i), 2*k), where N(k, i) = binomial(k, i)*binomial(k, i-1)/k. (See proposition 3.4 in Cho et al.).
T(n, 2) = A006007(n-1).
Previous Showing 21-29 of 29 results.