A160884 Regular coverings having dihedral voltage groups: see Kwak-Lee reference in A160870 for precise definition.
3, 15, 121, 1271, 15233
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a001001 n = sum [sum [k * (if k `mod` l == 0 then l else 0) | k <- [1..n], n `mod` k == 0 ] | l <- [1..n]] a = [ a001001 n | n <- [1..53]] putStrLn $ concat $ map (++ ", ") (map show a) -- Miles Wilson, Apr 04 2025
nmax := 100: L12 := [seq(1,i=1..nmax) ]; L27 := [seq(i,i=1..nmax) ]; L290 := [seq(i^2,i=1..nmax) ]; DIRICHLET(L12,L27) ; DIRICHLET(%,L290) ; # R. J. Mathar, Sep 25 2017
a[n_] := Sum[ d*DivisorSigma[1, d], {d, Divisors[n]}]; Table[ a[n], {n, 1, 42}] (* Jean-François Alcover, Jan 20 2012, after Vladeta Jovovic *) f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 2}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
N=17; default(seriesprecision,N); x=z+O(z^(N+1)) c=sum(j=1,N,j*x^j); t=1/prod(j=1,N, eta(x^(j))^j) t=log(t) t=serconvol(t,c) Vec(t) /* Joerg Arndt, May 03 2008 */
a(n)=sumdiv(n,d, d * sumdiv(d,t, t ) ); /* Joerg Arndt, Oct 07 2012 */
a(n)=sumdivmult(n,d, sigma(d)*d) \\ Charles R Greathouse IV, Sep 09 2014
There are 7 = A160870(4,2) lattices of volume 4 in Z^2. Among them, only one (<(2,0), (0,2)>) gives the quotient group C_2 x C_2, whereas the rest give C_4. Hence, T(4,2) = 6 and T(1,2) = 1. Array begins: k=1 k=2 k=3 k=4 k=5 k=6 n=1 1 1 1 1 1 1 n=2 1 3 7 15 31 63 n=3 1 4 13 40 121 364 n=4 1 6 28 120 496 2016 n=5 1 6 31 156 781 3906 n=6 1 12 91 600 3751 22932
f[p_, e_, k_] := p^((k - 1)*(e - 1))*(p^k - 1)/(p - 1); T[n_, 1] = T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 08 2022 *)
f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 6}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
a[n_] := DivisorSum[n, #*DivisorSum[#, #*DivisorSum[#, #&]&]&]; Array[a, 50] (* Jean-François Alcover, Dec 02 2015, after Joerg Arndt *) f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 3}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
a(n)=sumdiv(n,x, x * sumdiv(x,y, y * sumdiv(y,z, z ) ) ); /* Joerg Arndt, Oct 07 2012 */
a[n_] := DivisorSum[n, #*DivisorSum[#, #*DivisorSum[#, #*DivisorSum[#, # &] &] &] &]; Array[a, 50] (* Jean-François Alcover, Dec 02 2015, after Joerg Arndt *) f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 4}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
a(n)=sumdiv(n,x, x * sumdiv(x,y, y * sumdiv(y,z, z * sumdiv(z,w, w ) ) ) ); /* Joerg Arndt, Oct 07 2012 */
Comments