cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A160884 Regular coverings having dihedral voltage groups: see Kwak-Lee reference in A160870 for precise definition.

Original entry on oeis.org

3, 15, 121, 1271, 15233
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2009

Keywords

A160885 Regular coverings having dihedral voltage groups: see Kwak-Lee reference in A160870 for precise definition.

Original entry on oeis.org

4, 29, 281, 3231, 42099
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2009

Keywords

A160886 Regular coverings having dihedral voltage groups: see Kwak-Lee reference in A160870 for precise definition.

Original entry on oeis.org

4, 26, 250, 3086, 44674
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2009

Keywords

A160887 Regular coverings having dihedral voltage groups: see Kwak-Lee reference in A160870 for precise definition.

Original entry on oeis.org

4, 35, 431, 6267, 102555
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2009

Keywords

A160888 Regular coverings having dihedral voltage groups: see Kwak-Lee reference in A160870 for precise definition.

Original entry on oeis.org

3, 19, 225, 3475, 61521
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2009

Keywords

A001001 Number of sublattices of index n in generic 3-dimensional lattice.

Original entry on oeis.org

1, 7, 13, 35, 31, 91, 57, 155, 130, 217, 133, 455, 183, 399, 403, 651, 307, 910, 381, 1085, 741, 931, 553, 2015, 806, 1281, 1210, 1995, 871, 2821, 993, 2667, 1729, 2149, 1767, 4550, 1407, 2667, 2379, 4805, 1723, 5187, 1893, 4655, 4030, 3871, 2257, 8463, 2850, 5642, 3991, 6405, 2863
Offset: 1

Views

Author

Keywords

Comments

These sublattices are in 1-1 correspondence with matrices
[a b d]
[0 c e]
[0 0 f]
with acf = n, b = 0..c-1, d = 0..f-1, e = 0..f-1. The sublattice is primitive if gcd(a,b,c,d,e,f) = 1.
Total area of all distinct rectangles whose side lengths are divisors of n, and whose length is an integer multiple of the width. - Wesley Ivan Hurt, Aug 23 2020

References

  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(d), pp. 76 and 113.

Crossrefs

Column 3 of A160870.
Cf. A060983, A064987 (Mobius transform).
Primes in this sequence are in A053183.

Programs

  • Haskell
    a001001 n = sum [sum [k * (if k `mod` l == 0 then l else 0) | k <- [1..n], n `mod` k == 0 ] | l <- [1..n]]
    a = [ a001001 n | n <- [1..53]]
    putStrLn $ concat $ map (++ ", ") (map show a) -- Miles Wilson, Apr 04 2025
  • Maple
    nmax := 100:
    L12 := [seq(1,i=1..nmax) ];
    L27 := [seq(i,i=1..nmax) ];
    L290 := [seq(i^2,i=1..nmax) ];
    DIRICHLET(L12,L27) ;
    DIRICHLET(%,L290) ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    a[n_] := Sum[ d*DivisorSigma[1, d], {d, Divisors[n]}]; Table[ a[n], {n, 1, 42}] (* Jean-François Alcover, Jan 20 2012, after Vladeta Jovovic *)
    f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 2}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    N=17; default(seriesprecision,N); x=z+O(z^(N+1))
    c=sum(j=1,N,j*x^j);
    t=1/prod(j=1,N, eta(x^(j))^j)
    t=log(t)
    t=serconvol(t,c)
    Vec(t)
    /* Joerg Arndt, May 03 2008 */
    
  • PARI
    a(n)=sumdiv(n,d, d * sumdiv(d,t, t ) );  /* Joerg Arndt, Oct 07 2012 */
    
  • PARI
    a(n)=sumdivmult(n,d, sigma(d)*d) \\ Charles R Greathouse IV, Sep 09 2014
    

Formula

If n = Product p^m, a(n) = Product (p^(m + 1) - 1)(p^(m + 2) - 1)/(p - 1)(p^2 - 1). Or, a(n) = Sum_{d|n} sigma(n/d)*d^2, Dirichlet convolution of A000290 and A000203.
a(n) = Sum_{d|n} d*sigma(d). - Vladeta Jovovic, Apr 06 2001
Multiplicative with a(p^e) = ((p^(e+1)-1)(p^(e+2)-1))/((p-1)(p^2-1)). - David W. Wilson, Sep 01 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^sigma(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018
a(n) = Sum_{d1|n, d2|n, d1|d2} d1*d2. - Wesley Ivan Hurt, Aug 23 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = Pi^2*zeta(3)/18 = 0.659101... . - Amiram Eldar, Oct 19 2022
G.f.: Sum_{k>=1} Sum {l>=1} k*l^2*x^(k*l - 1)/(1 - x^(k*l)). - Miles Wilson, Apr 04 2025

A263950 Array read by antidiagonals: T(n,k) is the number of lattices L in Z^k such that the quotient group Z^k / L is C_n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 6, 13, 15, 1, 1, 6, 28, 40, 31, 1, 1, 12, 31, 120, 121, 63, 1, 1, 8, 91, 156, 496, 364, 127, 1, 1, 12, 57, 600, 781, 2016, 1093, 255, 1, 1, 12, 112, 400, 3751, 3906, 8128, 3280, 511, 1, 1, 18, 117, 960, 2801, 22932, 19531, 32640
Offset: 1

Views

Author

Álvar Ibeas, Oct 30 2015

Keywords

Comments

All the enumerated lattices have full rank k, since the quotient group is finite.
For m>=1, T(n,k) is the number of lattices L in Z^k such that the quotient group Z^k / L is C_nm x (C_m)^(k-1); and also, (C_nm)^(k-1) x C_m.
Also, number of subgroups of (C_n)^k isomorphic to C_n (and also, to (C_n)^{k-1}), cf. [Butler, Lemma 1.4.1].
T(n,k) is the sum of the divisors d of n^(k-1) such that n^(k-1)/d is k-free. Namely, the coefficient in n^(-(k-1)*s) of the Dirichlet series zeta(s) * zeta(s-1) / zeta(ks).
Also, number of isomorphism classes of connected (C_n)-fold coverings of a connected graph with circuit rank k.
Columns are multiplicative functions.

Examples

			There are 7 = A160870(4,2) lattices of volume 4 in Z^2. Among them, only one (<(2,0), (0,2)>) gives the quotient group C_2 x C_2, whereas the rest give C_4. Hence, T(4,2) = 6 and T(1,2) = 1.
Array begins:
      k=1    k=2    k=3    k=4    k=5    k=6
n=1     1      1      1      1      1      1
n=2     1      3      7     15     31     63
n=3     1      4     13     40    121    364
n=4     1      6     28    120    496   2016
n=5     1      6     31    156    781   3906
n=6     1     12     91    600   3751  22932
		

References

  • Lynne M. Butler, Subgroup lattices and symmetric functions. Mem. Amer. Math. Soc., Vol. 112, No. 539, 1994.

Crossrefs

Programs

  • Mathematica
    f[p_, e_, k_] := p^((k - 1)*(e - 1))*(p^k - 1)/(p - 1); T[n_, 1] = T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 08 2022 *)

Formula

T(n,k) = J_k(n) / J_1(n) = (Sum_{d|n} mu(n/d) * d^k) / phi(n).
T(n,k) = n^(k-1) * Product_{p|n, p prime} (p^k - 1) / ((p - 1) * p^(k-1)).
Dirichlet g.f. of k-th column: zeta(s-k+1) * Product_{p prime} (1 + p^(-s) + p^(1-s) + ... + p^(k-2-s)).
If n is squarefree, T(n,k) = A160870(n,k) = A000203(n^(k-1)).
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{i=1..n} T(i, k) ~ c * n^k, where c = (1/k) * Product_{p prime} (1 + (p^(k-1)-1)/((p-1)*p^k)).
Sum_{i>=1} 1/T(i, k) = zeta(k-1)*zeta(k) * Product_{p prime} (1 - 2/p^k + 1/p^(2*k-1)), for k > 2. (End)
T(n,k) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^k). - Ridouane Oudra, Apr 03 2025

A038994 Number of sublattices of index n in generic 7-dimensional lattice.

Original entry on oeis.org

1, 127, 1093, 10795, 19531, 138811, 137257, 788035, 896260, 2480437, 1948717, 11798935, 5229043, 17431639, 21347383, 53743987, 25646167, 113825020, 49659541, 210837145, 150021901, 247487059, 154764793, 861322255, 317886556, 664088461, 678468820, 1481689315
Offset: 1

Views

Author

Keywords

References

  • Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 6}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)

Formula

f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=7.
Multiplicative with a(p^e) = Product_{k=1..6} (p^(e+k)-1)/(p^k-1).
Sum_{k=1..n} a(k) ~ c * n^7, where c = Pi^12*zeta(3)*zeta(5)*zeta(7)/3572100 = 0.325206... . - Amiram Eldar, Oct 19 2022

Extensions

More terms from Amiram Eldar, Aug 29 2019

A038991 Number of sublattices of index n in generic 4-dimensional lattice.

Original entry on oeis.org

1, 15, 40, 155, 156, 600, 400, 1395, 1210, 2340, 1464, 6200, 2380, 6000, 6240, 11811, 5220, 18150, 7240, 24180, 16000, 21960, 12720, 55800, 20306, 35700, 33880, 62000, 25260, 93600, 30784, 97155, 58560, 78300, 62400, 187550, 52060, 108600, 95200, 217620, 70644, 240000, 81400
Offset: 1

Views

Author

Keywords

References

  • M. Baake, "Solution of coincidence problem...", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #*DivisorSum[#, #*DivisorSum[#, #&]&]&]; Array[a, 50] (* Jean-François Alcover, Dec 02 2015, after Joerg Arndt *)
    f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 3}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    a(n)=sumdiv(n,x, x * sumdiv(x,y, y * sumdiv(y,z, z ) ) ); /* Joerg Arndt, Oct 07 2012 */

Formula

f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=4.
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)*zeta(s-3).
Dirichlet convolution of A000578 and A001001.
Multiplicative with a(p^e) = Product_{k=1..3} (p^(e+k)-1)/(p^k-1).
Sum_{k=1..n} a(k) ~ Pi^6 * Zeta(3) * n^4 / 2160. - Vaclav Kotesovec, Feb 01 2019
Conjectured g.f.: Sum_{k>=1} Sum {l>=1} Sum {m>=1} k*l^2*m^3*x^(k*l*m)/(1 - x^(k*l*m)) (by extension of g.f for A001001). - Miles Wilson, Apr 05 2025

Extensions

Offset changed from 0 to 1 by R. J. Mathar, Mar 31 2011
More terms from Joerg Arndt, Oct 07 2012

A038992 Number of sublattices of index n in generic 5-dimensional lattice.

Original entry on oeis.org

1, 31, 121, 651, 781, 3751, 2801, 11811, 11011, 24211, 16105, 78771, 30941, 86831, 94501, 200787, 88741, 341341, 137561, 508431, 338921, 499255, 292561, 1429131, 508431, 959171, 925771, 1823451, 732541, 2929531, 954305, 3309747, 1948705, 2750971, 2187581, 7168161, 1926221
Offset: 1

Views

Author

Keywords

References

  • Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #*DivisorSum[#, #*DivisorSum[#, #*DivisorSum[#, # &] &] &] &]; Array[a, 50] (* Jean-François Alcover, Dec 02 2015, after Joerg Arndt *)
    f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 4}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    a(n)=sumdiv(n,x, x * sumdiv(x,y, y * sumdiv(y,z, z * sumdiv(z,w, w ) ) ) ); /* Joerg Arndt, Oct 07 2012 */

Formula

f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=5.
Multiplicative with a(p^e) = Product_{k=1..4} (p^(e+k)-1)/(p^k-1).
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)*zeta(s-3)*zeta(s-4). Dirichlet convolution of A038991 with A000583. - R. J. Mathar, Mar 31 2011
Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^6*zeta(3)*zeta(5)/2700 = 0.443822... . - Amiram Eldar, Oct 19 2022

Extensions

Offset changed from 0 to 1 by R. J. Mathar, Mar 31 2011
More terms from Joerg Arndt, Oct 07 2012
Previous Showing 11-20 of 33 results. Next