cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A161450 Numbers n such that A160700(n) = 10.

Original entry on oeis.org

10, 27, 40, 57, 78, 95, 108, 125, 130, 147, 160, 177, 198, 215, 228, 245, 267, 282, 297, 312, 335, 350, 365, 380, 387, 402, 417, 432, 455, 470, 485, 500, 520, 537, 554, 571, 588, 605, 622, 639, 640, 657, 674, 691, 708, 725, 742, 759, 777, 792, 811, 826, 845
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2009

Keywords

Crossrefs

Programs

  • PARI
    A160700(n)=my(t=n%16); while(n>15, n>>=4; t=bitxor(t, n%16)); t
    a(n)=for(k=16*n-16, 16*n-1, if(a(k)==10, return(k))) \\ Charles R Greathouse IV, Jan 25 2018

Formula

16n - 16 <= a(n) <= 16n - 1. - Charles R Greathouse IV, Jan 25 2018

A161451 Numbers n such that A160700(n) = 11.

Original entry on oeis.org

11, 26, 41, 56, 79, 94, 109, 124, 131, 146, 161, 176, 199, 214, 229, 244, 266, 283, 296, 313, 334, 351, 364, 381, 386, 403, 416, 433, 454, 471, 484, 501, 521, 536, 555, 570, 589, 604, 623, 638, 641, 656, 675, 690, 709, 724, 743, 758, 776, 793, 810, 827, 844
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2009

Keywords

Crossrefs

Programs

  • PARI
    A160700(n)=my(t=n%16); while(n>15, n>>=4; t=bitxor(t, n%16)); t
    a(n)=for(k=16*n-16, 16*n-1, if(a(k)==11, return(k))) \\ Charles R Greathouse IV, Jan 25 2018

Formula

16n - 16 <= a(n) <= 16n - 1. - Charles R Greathouse IV, Jan 25 2018

A161452 Numbers m such that A160700(m) = 12.

Original entry on oeis.org

12, 29, 46, 63, 72, 89, 106, 123, 132, 149, 166, 183, 192, 209, 226, 243, 269, 284, 303, 318, 329, 344, 363, 378, 389, 404, 423, 438, 449, 464, 483, 498, 526, 543, 556, 573, 586, 603, 616, 633, 646, 663, 676, 693, 706, 723, 736, 753, 783, 798, 813, 828, 843
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2009

Keywords

Crossrefs

Programs

  • PARI
    A160700(n)=my(t=n%16); while(n>15, n>>=4; t=bitxor(t, n%16)); t
    a(n)=for(k=16*n-16, 16*n-1, if(a(k)==12, return(k))) \\ Charles R Greathouse IV, Jan 25 2018

Formula

16n - 16 <= a(n) <= 16n - 1. - Charles R Greathouse IV, Jan 25 2018

A161453 Numbers n such that A160700(n) = 13.

Original entry on oeis.org

13, 28, 47, 62, 73, 88, 107, 122, 133, 148, 167, 182, 193, 208, 227, 242, 268, 285, 302, 319, 328, 345, 362, 379, 388, 405, 422, 439, 448, 465, 482, 499, 527, 542, 557, 572, 587, 602, 617, 632, 647, 662, 677, 692, 707, 722, 737, 752, 782, 799, 812, 829, 842
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2009

Keywords

Crossrefs

Programs

  • PARI
    A160700(n)=my(t=n%16); while(n>15, n>>=4; t=bitxor(t, n%16)); t
    a(n)=for(k=16*n-16, 16*n-1, if(a(k)==13, return(k))) \\ Charles R Greathouse IV, Jan 25 2018

Formula

16n - 16 <= a(n) <= 16n - 1. - Charles R Greathouse IV, Jan 25 2018

A161454 Numbers n such that A160700(n) = 14.

Original entry on oeis.org

14, 31, 44, 61, 74, 91, 104, 121, 134, 151, 164, 181, 194, 211, 224, 241, 271, 286, 301, 316, 331, 346, 361, 376, 391, 406, 421, 436, 451, 466, 481, 496, 524, 541, 558, 575, 584, 601, 618, 635, 644, 661, 678, 695, 704, 721, 738, 755, 781, 796, 815, 830, 841
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2009

Keywords

Crossrefs

Programs

  • PARI
    A160700(n)=my(t=n%16); while(n>15, n>>=4; t=bitxor(t, n%16)); t
    a(n)=for(k=16*n-16, 16*n-1, if(a(k)==14, return(k))) \\ Charles R Greathouse IV, Jan 25 2018

Formula

16n - 16 <= a(n) <= 16n - 1. - Charles R Greathouse IV, Jan 25 2018

A161455 Numbers n such that A160700(n) = 15.

Original entry on oeis.org

15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 270, 287, 300, 317, 330, 347, 360, 377, 390, 407, 420, 437, 450, 467, 480, 497, 525, 540, 559, 574, 585, 600, 619, 634, 645, 660, 679, 694, 705, 720, 739, 754, 780, 797, 814, 831, 840
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2009

Keywords

Crossrefs

Programs

  • PARI
    A160700(n)=my(t=n%16); while(n>15, n>>=4; t=bitxor(t, n%16)); t
    a(n)=for(k=16*n-16, 16*n-1, if(a(k)==15, return(k))) \\ Charles R Greathouse IV, Jan 25 2018

Formula

16n - 16 <= a(n) <= 16n - 1. - Charles R Greathouse IV, Jan 25 2018

A360962 Square array T(n,k) = k*((3+6*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 4, 5, 0, 7, 17, 12, 0, 10, 29, 39, 22, 0, 13, 41, 66, 70, 35, 0, 16, 53, 93, 118, 110, 51, 0, 19, 65, 120, 166, 185, 159, 70, 0, 22, 77, 147, 214, 260, 267, 217, 92, 0, 25, 89, 174, 262, 335, 375, 364, 284, 117, 0, 28, 101, 201, 310, 410, 483, 511, 476, 360, 145
Offset: 0

Views

Author

Paul Curtz, Feb 27 2023

Keywords

Comments

The main diagonal is A024394.
The antidiagonals sums are A000537.

Examples

			The rows are:
  0  1  5  12  22  35  51  70 ... = A000326
  0  4 17  39  70 110 159 217 ... = A022266
  0  7 29  66 118 185 267 364 ... = A022272
  0 10 41  93 166 260 375 511 ... = A022278
  0 13 53 120 214 335 483 658 ... = A022284
  ... .
Columns: A000004, A016777, A017581, A154266=3*A017209, 2*A348845, 5*A161447, 3*A158057(n+1), ... (coefficients from A026741).
Difference between two consecutive rows are: A033428.
This square array read by antidiagonals leads to the triangle
  0
  0  1
  0  4  5
  0  7 17 12
  0 10 29 39  22
  0 13 41 66  70  35
  0 16 53 93 118 110 51
  ... .
		

Crossrefs

Programs

  • Maple
    T:= (n,k)-> k*(k*(3+6*n)-1)/2:
    seq(seq(T(d-k,k), k=0..d), d=0..10);  # Alois P. Heinz, Feb 28 2023
  • Mathematica
    T[n_, k_] := ((6*n + 3)*k - 1)*k/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 27 2023 *)
  • PARI
    T(n,k) = k*((3+6*n)*k-1)/2; \\ Michel Marcus, Feb 27 2023

Formula

Take successively sequences n*(3*n-1)/2, n*(9*n-1)/2, n*(15*n-1)/2, n*(21*n-1)/2, ... listed in the EXAMPLE section.
From Stefano Spezia, Feb 21 2024: (Start)
G.f.: y*(1 + 2*y + x*(2 + y))/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2 + 3*y + 6*x*(1 + y))/2. (End)
Previous Showing 11-17 of 17 results.