cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A267167 Growth series for affine Coxeter group B_4.

Original entry on oeis.org

1, 5, 14, 31, 59, 101, 161, 243, 351, 488, 658, 865, 1112, 1403, 1741, 2130, 2574, 3077, 3643, 4274, 4974, 5747, 6597, 7528, 8543, 9646, 10840, 12129, 13517, 15007, 16603, 18309, 20129, 22066, 24123, 26304, 28613, 31054, 33631, 36347, 39205, 42209, 45363, 48671, 52136, 55762, 59553, 63512, 67643, 71949, 76434, 81102, 85957, 91003, 96242
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)))); // G. C. Greubel, Oct 24 2018
  • Maple
    seq(coeff(series((1-x^2)*(1+x^3)*(1-x^4)*(1-x^8)/((1-x)^5*(1-x^5)*(1-x^7)),x,n+1), x, n), n = 0 .. 55); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)), {t, 0, 50}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    t='t+O('t^40); Vec((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7))) \\ G. C. Greubel, Oct 24 2018
    

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].
Here (k=4) the G.f. is (1+t+t^2+t^3+t^4+t^5+t^6+t^7)*(t^3+1)*(1+t+t^2+t^3)*(1+t) / (-1+t^7)/(-1+t^5)/(-1+t)^2.
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + a(n-9) - a(n-12) + 2*a(n-13) - a(n-14), n > 0. - Muniru A Asiru, Oct 25 2018

A267175 Growth series for affine Coxeter group B_12.

Original entry on oeis.org

1, 13, 90, 443, 1741, 5811, 17109, 45577, 111852, 256282, 553866, 1138110, 2237924, 4233126, 7735923, 13707967, 23625303, 39706809, 65225654, 104927954, 165588279, 256738054, 391610309, 588352779, 871571154, 1274275456, 1840315206, 2627403376, 3710845242, 5188106314, 7184373674, 9859287465, 13415044111, 18106100284, 24250736849
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A267168 Growth series for affine Coxeter group B_5.

Original entry on oeis.org

1, 6, 20, 51, 110, 211, 372, 615, 966, 1455, 2117, 2991, 4120, 5551, 7334, 9524, 12180, 15365, 19146, 23594, 28784, 34795, 41711, 49619, 58611, 68783, 80234, 93067, 107389, 123312, 140952, 160430, 181870, 205400, 231152, 259261, 289867, 323114, 359151, 398131, 440211, 485551, 534315, 586672, 642794, 702858, 767045, 835540, 908532, 986214
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].
Here (k=5) the G.f. is -(1+t)*(1+t+t^2+t^3)*(t^3+1)*(1+t+t^2+t^3+t^4+t^5+t^6+t^7)*(t^5+1)/(-1+t^9)/(-1+t^7)/(-1+t)^3.

A267169 Growth series for affine Coxeter group B_6.

Original entry on oeis.org

1, 7, 27, 78, 188, 399, 771, 1386, 2352, 3807, 5924, 8916, 13041, 18606, 25971, 35554, 47835, 63361, 82750, 106695, 135968, 171425, 214011, 264764, 324820, 395417, 477900, 573724, 684459, 811795, 957546, 1123655, 1312198, 1525389, 1765583, 2035281, 2337134, 2673948, 3048689, 3464488, 3924646, 4432636, 4992108, 5606893, 6281008, 7018660
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A267170 Growth series for affine Coxeter group B_7.

Original entry on oeis.org

1, 8, 35, 113, 301, 700, 1471, 2857, 5209, 9016, 14940, 23856, 36897, 55504, 81481, 117055, 164941, 228412, 311373, 418440, 555023, 727414, 942880, 1209761, 1537573, 1937115, 2420581, 3001676, 3695738, 4519865, 5493047, 6636302, 7972817, 9528094, 11330100, 13409422, 15799426, 18536422, 21659833, 25212370, 29240211, 33793185, 38924961
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A267171 Growth series for affine Coxeter group B_8.

Original entry on oeis.org

1, 9, 44, 157, 458, 1158, 2629, 5486, 10695, 19711, 34651, 58507, 95404, 150908, 232389, 349445, 514393, 742832, 1054283, 1472911, 2028333, 2756518, 3700784, 4912897, 6454277, 8397316, 10826813, 13841530, 17555875, 22101717, 27630339, 34314534, 42350849, 51961982, 63399337, 76945741, 92918329, 111671603, 133600669, 159144658, 188790335
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A267172 Growth series for affine Coxeter group B_9.

Original entry on oeis.org

1, 10, 54, 211, 669, 1827, 4456, 9942, 20637, 40348, 74999, 133506, 228910, 379818, 612207, 961652, 1476045, 2218878, 3273169, 4746115, 6774561, 9531380, 13232864, 18147232, 24604366, 33006891, 43842720, 57699190, 75278921, 97417535, 125103378, 159499393, 201967298, 254094228, 317722005, 394979205, 488316197, 600543335, 734872490
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A267173 Growth series for affine Coxeter group B_10.

Original entry on oeis.org

1, 11, 65, 276, 945, 2772, 7228, 17170, 37807, 78155, 153154, 286660, 515570, 895388, 1507595, 2469247, 3945292, 6164170, 9437339, 14183455, 20958025, 30489449, 43722470, 61870160, 86475684, 119485204, 163333410, 221043295, 296341927, 393794113, 518955998, 678550795, 880669001, 1134995618, 1453067068, 1848560666, 2337619696, 2939217322
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A267174 Growth series for affine Coxeter group B_11.

Original entry on oeis.org

1, 12, 77, 353, 1298, 4070, 11298, 28468, 66275, 144430, 297584, 584244, 1099814, 1995202, 3502797, 5972044, 9917336, 16081506, 25518845, 39702300, 60660325, 91149775, 134872255, 196742469, 283218364, 402704237, 566039474, 787087225, 1083439094, 1477253844, 1996250190, 2674875984, 3555678491, 4690903019, 6144349905, 7993522778
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A161697 Number of reduced words of length n in the Weyl group B_4.

Original entry on oeis.org

1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=17; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..4]])/(1-t)^4)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..4),x,n+1), x, n), n = 0 .. 100); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)), {k,1,4}] /(1-x)^4, {x,0,16}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^17); Vec(prod(k=1,4,1-t^(2*k))/(1-t)^4) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
Previous Showing 11-20 of 21 results. Next