cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A349169 Numbers k such that k * gcd(sigma(k), A003961(k)) is equal to the odd part of {sigma(k) * gcd(k, A003961(k))}, where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 15, 105, 3003, 3465, 13923, 45045, 264537, 459459, 745875, 1541475, 5221125, 8729721, 10790325, 14171625, 29288025, 34563375, 57034575, 71430975, 99201375, 109643625, 144729585, 205016175, 255835125, 295708875, 356080725, 399242025, 419159475, 449323875, 928602675, 939495375, 1083656925, 1941623775, 1962350685, 2083228875
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Numbers k such that A348990(k) [= k/gcd(k, A003961(k))] is equal to A348992(k), which is the odd part of A349162(k), thus all terms must be odd, as A348990 preserves the parity of its argument.
Equally, numbers k for which gcd(A064987(k), A191002(k)) is equal to A000265(gcd(A064987(k), A341529(k))).
Also odd numbers k for which A348993(k) = A319627(k).
Odd terms of A336702 are given by the intersection of this sequence and A349174.
Conjectures:
(1) After 1, all terms are multiples of 3. (Why?)
(2) After 1, all terms are in A104210, in other words, for all n > 1, gcd(a(n), A003961(a(n))) > 1. Note that if we encountered a term k with gcd(k, A003961(k)) = 1, then we would have discovered an odd multiperfect number.
(3) Apart from 1, 15, 105, 3003, 13923, 264537, all other terms are abundant. [These apparently are also the only terms that are not Zumkeller, A083207. Note added Dec 05 2024]
(4) After 1, all terms are in A248150. (Cf. also A386430).
(5) After 1, all terms are in A348748.
(6) Apart from 1, there are no common terms with A349753.
Note: If any of the last four conjectures could be proved, it would refute the existence of odd perfect numbers at once. Note that it seems that gcd(sigma(k), A003961(k)) < k, for all k except these four: 1, 2, 20, 160.
Questions:
(1) For any term x here, can 2*x be in A349745? (Partial answer: at least x should be in A191218 and should not be a multiple of 3). Would this then imply that x is an odd perfect number? (Which could explain the points (1) and (4) in above, assuming the nonexistence of opn's).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], #1/GCD[#1, #3] == #2/(2^IntegerExponent[#2, 2]*GCD[#2, #3]) & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349169(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == A000265(s)*gcd(n,u)); }; \\ (Program simplified Nov 30 2021)

Formula

For all n >= 1, A007949(A000203(a(n))) = A007949(a(n)). [sigma preserves the 3-adic valuation of the terms of this sequence] - Antti Karttunen, Nov 29 2021

Extensions

Name changed and comment section rewritten by Antti Karttunen, Nov 29 2021

A349161 a(n) = A003961(n) / gcd(sigma(n), A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 5, 9, 7, 5, 11, 9, 25, 7, 13, 45, 17, 11, 35, 81, 19, 25, 23, 3, 55, 13, 29, 9, 49, 17, 25, 99, 31, 35, 37, 27, 65, 19, 77, 225, 41, 23, 85, 21, 43, 55, 47, 39, 175, 29, 53, 405, 121, 49, 95, 153, 59, 25, 91, 99, 23, 31, 61, 15, 67, 37, 275, 729, 17, 65, 71, 19, 145, 77, 73, 45, 79, 41, 245, 207, 143, 85, 83
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Numerator of ratio A003961(n) / A000203(n). Sequence A349162 gives the denominators.
Numerator of ratio A003961(n) / A161942(n). Sequence A348992 gives the denominators.
Both ratios are multiplicative because the constituent sequences are.
No 1's occur as terms after a(2), because for n > 2, sigma(n) < A003961(n). (See A286385).

Crossrefs

Programs

  • Mathematica
    Array[#2/GCD[##] & @@ {DivisorSigma[1, #], If[# == 1, 1, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]} &, 79] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349161(n) = { my(u=A003961(n)); (u/gcd(u,sigma(n))); };
    
  • Python
    from math import prod, gcd
    from sympy import nextprime, factorint
    def A349161(n):
        f = factorint(n).items()
        a = prod(nextprime(p)**e for p, e in f)
        b = prod((p**(e+1)-1)//(p-1) for p, e in f)
        return a//gcd(a,b) # Chai Wah Wu, Mar 17 2023

Formula

a(n) = A003961(n) / A342671(n) = A003961(n) / gcd(A000203(n), A003961(n)).
a(n) = A003961(A349164(n)).

A336698 a(n) = A000265(1+A000265(sigma(n))), where A000265(k) gives the odd part of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 1, 1, 1, 1, 1, 1, 5, 5, 3, 11, 1, 5, 1, 1, 1, 11, 3, 1, 1, 5, 1, 1, 1, 7, 1, 23, 5, 1, 1, 23, 11, 1, 3, 11, 5, 5, 1, 1, 29, 47, 5, 25, 7, 1, 5, 1, 3, 23, 1, 11, 1, 1, 7, 1, 11, 5, 9, 1, 1, 5, 5, 49, 19, 29, 1, 9, 1, 11, 3, 47, 61, 1, 11, 1, 7, 17, 1, 23, 23, 59, 1, 11, 1, 5, 1, 1, 25
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A000265(1+A000265(A000203(n))) = A000265(1+A161942(n)).
a(A000265(n)) = A336699(n).

A286357 One more than the exponent of the highest power of 2 dividing sigma(n): a(n) = A001511(A000203(n)).

Original entry on oeis.org

1, 1, 3, 1, 2, 3, 4, 1, 1, 2, 3, 3, 2, 4, 4, 1, 2, 1, 3, 2, 6, 3, 4, 3, 1, 2, 4, 4, 2, 4, 6, 1, 5, 2, 5, 1, 2, 3, 4, 2, 2, 6, 3, 3, 2, 4, 5, 3, 1, 1, 4, 2, 2, 4, 4, 4, 5, 2, 3, 4, 2, 6, 4, 1, 3, 5, 3, 2, 6, 5, 4, 1, 2, 2, 3, 3, 6, 4, 5, 2, 1, 2, 3, 6, 3, 3, 4, 3, 2, 2, 5, 4, 8, 5, 4, 3, 2, 1, 3, 1, 2, 4, 4, 2, 7, 2, 3, 4, 2, 4, 4, 4, 2, 5, 5, 2, 2, 3, 5, 4
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[IntegerExponent[DivisorSigma[1,n],2]+1,{n,120}] (* Harvey P. Dale, Sep 04 2023 *)
  • PARI
    A001511(n) = (1+valuation(n,2));
    A286357(n) = A001511(sigma(n));
    for(n=1, 10000, write("b286357.txt", n, " ", A286357(n)));
    
  • Python
    from sympy import divisor_sigma as D
    def a001511(n): return bin(n)[2:][::-1].index("1") + 1
    def a(n): return a001511(D(n)) # Indranil Ghosh, May 12 2017
    
  • Python
    from sympy import divisor_sigma
    def A286357(n): return ((m:=int(divisor_sigma(n)))&-m).bit_length() # Chai Wah Wu, Jul 10 2022
  • Scheme
    (define (A286357 n) (A001511 (A000203 n)))
    (define (A286357 n) (A070939 (/ (A000203 n) (A161942 n))))
    

Formula

a(n) = A001511(A000203(n)).
a(n) = 1 + A000523(A000203(n)/A161942(n)). [See also A082903.]
a(n) = 1 iff A053866(n) = 1.

A337194 a(n) = 1 + A000265(sigma(n)), where A000265 gives the odd part.

Original entry on oeis.org

2, 4, 2, 8, 4, 4, 2, 16, 14, 10, 4, 8, 8, 4, 4, 32, 10, 40, 6, 22, 2, 10, 4, 16, 32, 22, 6, 8, 16, 10, 2, 64, 4, 28, 4, 92, 20, 16, 8, 46, 22, 4, 12, 22, 40, 10, 4, 32, 58, 94, 10, 50, 28, 16, 10, 16, 6, 46, 16, 22, 32, 4, 14, 128, 22, 10, 18, 64, 4, 10, 10, 196, 38, 58, 32, 36, 4, 22, 6, 94, 122, 64, 22, 8, 28, 34
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2020

Keywords

Crossrefs

One more than A161942.

Programs

Formula

a(n) = 1+A000265(A000203(n)).
a(n) = A336698(n) * 2^A337195(n).
A007949(a(n)) = A337196(n).

A286360 Compound filter (prime signature & sum of the divisors): a(n) = P(A046523(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 12, 49, 23, 142, 38, 239, 124, 259, 80, 753, 107, 412, 412, 1051, 173, 1237, 212, 1390, 672, 826, 302, 3427, 565, 1087, 1089, 2223, 467, 5080, 530, 4403, 1384, 1717, 1384, 7911, 743, 2086, 1836, 6352, 905, 7780, 992, 4477, 3928, 2932, 1178, 14583, 1774, 5368, 2932, 5898, 1487, 10177, 2932, 10177, 3576, 4471, 1832, 25711, 1955, 5056, 6567, 18019, 3922
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Cf. A007503, A065608 (sequences matching to this filter), also A000203, A046523, A161942, A286034, A286357.

Programs

  • PARI
    A000203(n) = sigma(n);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286360(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n));
    for(n=1, 10000, write("b286360.txt", n, " ", A286360(n)));
    
  • Python
    from sympy import factorint, divisor_sigma as D
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a046523(n), D(n)) # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A286360 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A000203 n)) 2) (- (A046523 n)) (- (* 3 (A000203 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n)).

A336700 Numbers k such that the odd part of (1+k) divides (1 + odd part of sigma(k)).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 2431, 2943, 3775, 4095, 8191, 13311, 14335, 16383, 17407, 21951, 22527, 32767, 34335, 44031, 57855, 65535, 85375, 131071, 204799, 262143, 376831, 524287, 923647, 1048575, 1562623, 1632255, 2056191, 2097151, 2744319, 4194303, 6815743, 8388607, 8781823, 10059775, 16777215
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2020

Keywords

Comments

Numbers k for which A337194(k) = 1+A161942(k) is a multiple of A000265(1+k).
Conjecture: After 1, all terms are of the form 4u+3 (in A004767). If this could be proved, then it would refute at once the existence of both the odd perfect numbers and the quasiperfect numbers. Concentrating on the latter is probably easier, as it is known that all quasiperfect numbers must be odd squares, thus k is of the form 4u+1, in which case the condition given in A336701 that A000265(1+A000265(sigma(k))) must be equal to A000265(1+k) reduces to a simpler form, A000265(1+sigma(k)) = (1+k)/2, and as k = s^2, with s odd, so (s^2 + 1)/2 should divide 1+sigma(s^2). Does that condition allow any other solutions than s=1 ? See A337339.

Crossrefs

Subsequences: A000225, A336701 (terms where the quotient is a power of 2).

Programs

  • Mathematica
    Block[{f}, f[n_] := n/2^IntegerExponent[n, 2]; Select[Range[2^20], Mod[f[1 + f[DivisorSigma[1, #]]], f[1 + #]] == 0 &] ] (* Michael De Vlieger, Aug 22 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    isA336700(n) = !((1+A000265(sigma(n)))%A000265(1+n));

A336361 Number of iterations of A000593 (sum of divisors of odd part of n) needed to reach a power of 2, or -1 if never reached.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1, 2, 1, 2, 0, 4, 3, 3, 2, 1, 2, 2, 1, 2, 2, 3, 1, 3, 2, 1, 0, 2, 4, 2, 3, 4, 3, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 2, 4, 2, 4, 3, 4, 1, 3, 3, 3, 2, 2, 1, 3, 0, 2, 2, 5, 4, 2, 2, 4, 3, 5, 4, 2, 3, 2, 2, 3, 2, 5, 2, 2, 1, 4, 3, 3, 2, 4, 3, 2, 2, 1, 2, 3, 1, 5, 4, 3, 2, 5, 4, 3, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Comments

Also, for n > 1, one less than the number of iterations of A000593 to reach 1.
If there exists any hypothetical odd perfect numbers w, then the iteration will get stuck into a fixed point after encountering them, and we will have a(w) = a(2^k * w) = -1 by the escape clause.

Crossrefs

Cf. A054784 (positions of 0's and 1's in this sequence).

Programs

  • PARI
    A336361(n) = if(!bitand(n,n-1),0,1+A336361(sigma(n>>valuation(n,2))));

Formula

If A209229(n) = 1 [when n is a power of 2], a(n) = 0, otherwise a(n) = 1+a(A000593(n)).
a(n) = a(2n) = a(A000265(n)).

A348736 a(n) = n - A326042(n), where A326042(n) = A064989(sigma(A003961(n))).

Original entry on oeis.org

0, 1, 1, -7, 4, 4, 5, 5, -20, 9, 6, -10, 9, 12, 13, -33, 14, -11, 17, 9, 17, 17, 17, 18, -9, 22, 5, 6, 28, 28, 14, -23, 23, 31, 33, -283, 27, 36, 31, 37, 34, 38, 41, -11, 16, 40, 39, -50, -36, 16, 45, 8, 47, 32, 50, 50, 53, 57, 30, 38, 48, 45, 5, -1027, 61, 56, 63, 35, 57, 68, 40, -15, 70, 64, 7, 54, 67, 70, 69, 31
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Crossrefs

Cf. A348737, A348738 (positions of positive terms), A348739 (of negative terms).

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    A348736(n) = (n-A326042(n));

Formula

a(n) = n - A064989(A161942(A003961(n))).

A332459 Odd part of 1+sigma(n).

Original entry on oeis.org

1, 1, 5, 1, 7, 13, 9, 1, 7, 19, 13, 29, 15, 25, 25, 1, 19, 5, 21, 43, 33, 37, 25, 61, 1, 43, 41, 57, 31, 73, 33, 1, 49, 55, 49, 23, 39, 61, 57, 91, 43, 97, 45, 85, 79, 73, 49, 125, 29, 47, 73, 99, 55, 121, 73, 121, 81, 91, 61, 169, 63, 97, 105, 1, 85, 145, 69, 127, 97, 145, 73, 49, 75, 115, 125, 141, 97, 169, 81, 187, 61, 127
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2020

Keywords

Crossrefs

Programs

  • PARI
    A332459(n) = { my(s=1+sigma(n)); (s>>valuation(s,2)); };

Formula

a(n) = A000265(A088580(n)) = A000265(1+sigma(n)).
A002487(a(n)) = A324294(n).
a(2^n) = 0 for all n >= 0. [Zero occurs at least also at a(25). See A202274]
Previous Showing 11-20 of 52 results. Next