cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A125574 Primes p=prime(i) of level (1,14), i.e., such that A118534(i)=prime(i-14).

Original entry on oeis.org

31515413, 69730637, 132102911, 132375259, 215483129, 284491367, 325689253, 388190689, 548369603, 620829113, 633418787, 638213603, 670216277, 793852487, 797759539, 960200149, 1038197399, 1050359137, 1092920249, 1331713301, 1342954871, 1349496367, 1365964199
Offset: 1

Views

Author

Rémi Eismann and Fabien Sibenaler, Jan 27 2007

Keywords

Comments

This subsequence of A125830 and of A162174 gives primes of level (1,14): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			prime(15456800) - prime(15456799) = 284491601 - 284491367 = 284491367 - 284491133 = prime(15456799) - prime(15456799-14) and prime(15456799) has level 1 in A117563, so prime(15456799) = 284491367 has level (1,14).
		

Crossrefs

Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.

Programs

  • PARI
    lista(nn) = my(c=15, v=primes(15)); forprime(p=53, nn, if(2*v[c]-p==v[c=c%15+1], print1(precprime(p-1), ", ")); v[c]=p); \\ Jinyuan Wang, Jun 18 2021

Extensions

Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009

A162175 Primes classified by weight.

Original entry on oeis.org

11, 17, 29, 41, 59, 67, 71, 79, 83, 89, 101, 103, 107, 109, 137, 149, 167, 179, 191, 193, 197, 227, 229, 239, 241, 251, 269, 277, 281, 283, 311, 331, 347, 349, 359, 367, 379, 383, 409, 419, 431, 433, 439, 443, 449, 461, 463, 467, 487, 491, 499, 503, 521, 557
Offset: 1

Views

Author

Rémi Eismann, Jun 27 2009

Keywords

Comments

Conjecture: primes classified by level are rarefying among prime numbers.
A000040(n) = 2, 3, 7, A162174(n), a(n). - Rémi Eismann, Jun 27 2009
By definition, primes classified by weight have a prime gap g(n) < sqrt(p(n)) (or more precisely, for primes classified by weight, we have A001223(n) <= sqrt(A118534(n)) - 1 ). So by definition, prime numbers classified by weight follow Legendre's conjecture and Andrica's conjecture - Rémi Eismann, Aug 26 2013

Examples

			For prime(5)=11, A117078(5)=3 <= A117563(5)=3 ; prime(5)=11 is classified by weight. For prime(170)=1013, A117078(170)=19 <= A117563(170)=53 ; prime(170)=1013 is classified by weight.
		

Crossrefs

Formula

If for prime(n), A117078(n) (the weight) <= A117563(n) (the level) and A117078(n) <> 0 then prime(n) is classified by weight. If for prime(n), A117078(n) (the weight) > A117563(n) (the level) then prime(n) is classified by level.

A216177 Primes p=prime(i) of level (1,4), i.e., such that A118534(i) = prime(i-4).

Original entry on oeis.org

6581, 7963, 13063, 14107, 17053, 17627, 20563, 21347, 22193, 22877, 28319, 30727, 34981, 35171, 41549, 42101, 45197, 46103, 48823, 53201, 53899, 56269, 65449, 65993, 66191, 69031, 69403, 73613, 74101, 74323, 75797, 81973, 86209, 91463, 96293, 101537, 102563
Offset: 1

Views

Author

Fabien Sibenaler, Mar 10 2013

Keywords

Comments

If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			a(2) = 7963 = prime(1006) because 2*prime(1006) - prime(1007) = 2*7963 - 7993 = 7933 = prime(1002).
		

Crossrefs

Subsequence of A125830 and A162174.

Programs

  • Mathematica
    With[{m = 4}, Prime@ Select[Range[m + 1, 10^4], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)

A216180 Primes p=prime(i) of level (1,6), i.e., such that A118534(i) = prime(i-6).

Original entry on oeis.org

15823, 21617, 31277, 43331, 65731, 97883, 100853, 120947, 265277, 318023, 320953, 361241, 362759, 419831, 422141, 426799, 452549, 465211, 482441, 491539, 504403, 513533, 526781, 540391, 551597, 557093, 575261, 582251, 598729, 649093, 654629, 663601, 678779, 782723
Offset: 1

Views

Author

Fabien Sibenaler, Mar 10 2013

Keywords

Comments

If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			31277 = prime(3373) is a term because 2*prime(3373) - prime(3374) = 2*31277 - 31307 = 31247 = prime(3367).
		

Crossrefs

Subsequence of A125830 and of A162174.

Programs

  • Mathematica
    With[{m = 6}, Prime@ Select[Range[m + 1, 5*10^4], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    lista(nn) = my(c=7, v=primes(7)); forprime(p=19, nn, if(2*v[c]-p==v[c=c%7+1], print1(precprime(p-1), ", ")); v[c]=p); \\ Jinyuan Wang, Jun 18 2021

A216202 Primes p=prime(i) of level (1,7), i.e., such that A118534(i) = prime(i-7).

Original entry on oeis.org

22307, 39251, 81569, 85853, 132763, 159233, 179849, 188029, 281431, 370949, 373393, 421741, 480587, 607363, 630737, 741721, 770669, 782011, 812527, 879743, 909917, 928703, 1008263, 1037347, 1095859, 1111091, 1126897, 1173631, 1260911, 1382681, 1398781, 1439447
Offset: 1

Views

Author

Fabien Sibenaler, Mar 12 2013

Keywords

Comments

If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			81569 = prime(7980) is a term because:
prime(7981) = 81611, prime(7973) = 81527;
2*prime(7980) - prime(7981) = prime(7973).
		

Crossrefs

Subsequence of A125830 and A162174.

Programs

  • Mathematica
    With[{m = 7}, Prime@ Select[Range[m + 1, 10^5], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)

A216204 Primes p=prime(i) of level (1,8), i.e., such that A118534(i) = prime(i-8).

Original entry on oeis.org

259033, 308153, 343831, 377393, 576227, 597697, 780733, 990397, 1408889, 1643893, 1648613, 1678777, 1910179, 1942207, 2045377, 2049191, 2073403, 2388703, 2403701, 2430611, 2448883, 2481517, 2572529, 2710457, 2827687, 2982697, 3376859, 3404579, 3942413, 4119419
Offset: 1

Views

Author

Fabien Sibenaler, Mar 12 2013

Keywords

Comments

If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).
Subsequence of A125830 and of A162174.

Examples

			343831 = prime(24490) is a term because:
prime(24491) = 343891, prime(24382) = 343771;
2*prime(24490) - prime(24491) = prime(24382).
		

Crossrefs

Programs

  • Mathematica
    With[{m = 8}, Prime@ Select[Range[m + 1, 2*10^5], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    lista(nn) = my(v=primes(9)); forprime(p=29, nn, if(2*v[9]-p==v[1], print1(v[9], ", ")); v=concat(v[2..9], p)); \\ Jinyuan Wang, Jun 18 2021
Previous Showing 11-16 of 16 results.