cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A343177 a(0)=4; if n > 0 is even then a(n) = 2^(n/2+1)+3, otherwise a(n) = 3*(2^((n-1)/2)+1).

Original entry on oeis.org

4, 6, 7, 9, 11, 15, 19, 27, 35, 51, 67, 99, 131, 195, 259, 387, 515, 771, 1027, 1539, 2051, 3075, 4099, 6147, 8195, 12291, 16387, 24579, 32771, 49155, 65539, 98307, 131075, 196611, 262147, 393219, 524291, 786435, 1048579, 1572867, 2097155, 3145731, 4194307, 6291459
Offset: 0

Views

Author

N. J. A. Sloane, Apr 26 2021

Keywords

Comments

Number of edges along the boundary of the graph G(n) described in A342759.

Crossrefs

Cf. A342759.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Maple
    f:=n->if n = 0 then 4 elif (n mod 2) = 0 then 2^(n/2+1)+3 else 3*(2^((n-1)/2)+1); fi;
    [seq(f(n),n=0..40)];
  • Mathematica
    LinearRecurrence[{1, 2, -2}, {4, 6, 7, 9}, 50] (* or *)
    A343177[n_] := Which[n == 0, 4, OddQ[n], 3*(2^((n-1)/2)+1), True, 2^(n/2+1)+3];
    Array[A343177, 50, 0] (* Paolo Xausa, Feb 02 2024 *)

Formula

G.f.: (4 + 2*x - 7*x^2 - 2*x^3)/((1 - x)*(1 - 2*x^2)). - Stefano Spezia, Feb 04 2023
E.g.f.: 3*cosh(x) + 2*cosh(sqrt(2)*x) + 3*sinh(x) + 3*sinh(sqrt(2)*x)/sqrt(2) - 1. - Stefano Spezia, Jul 25 2024

A354785 Numbers of the form 3*2^k or 9*2^k.

Original entry on oeis.org

3, 6, 9, 12, 18, 24, 36, 48, 72, 96, 144, 192, 288, 384, 576, 768, 1152, 1536, 2304, 3072, 4608, 6144, 9216, 12288, 18432, 24576, 36864, 49152, 73728, 98304, 147456, 196608, 294912, 393216, 589824, 786432, 1179648, 1572864, 2359296, 3145728, 4718592, 6291456, 9437184, 12582912, 18874368, 25165824, 37748736, 50331648
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2022

Keywords

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283.

Programs

  • Mathematica
    seq[max_] := Union[Table[3*2^n, {n, 0, Floor[Log2[max/3]]}], Table[9*2^n, {n, 0, Floor[Log2[max/9]]}]]; seq[10^8] (* Amiram Eldar, Jan 16 2024 *)

Formula

Sum_{n>=1} 1/a(n) = 8/9. - Amiram Eldar, Jan 16 2024
G.f.: (3*x^2+6*x+3)/(1-2*x^2). - Georg Fischer, Apr 10 2025

A216218 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=2 or if k-n>=2, T(1,0) = T(0,0) = T(0,1) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 0, 2, 2, 0, 0, 0, 4, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2013

Keywords

Comments

With zeros omitted, this is A173862.

Examples

			Square array begins:
1, 1, 0, 0,  0,  0,  0, 0, ... row n=0
1, 2, 2, 0,  0,  0,  0, 0, ... row n=1
0, 2, 4, 4,  0,  0,  0, 0, ... row n=2
0, 0, 4, 8,  8,  0,  0, 0, ... row n=3
0, 0, 0, 8, 16, 16,  0, 0, ... row n=4
0, 0, 0, 0, 16, 32, 32, 0, ... row n=5
...
		

Crossrefs

Formula

T(n,n) = T(n+1,n) = T(n,n+1) = 2^n = A000079(n).
Sum_{k, 0<=k<=n} T(n-k,k) = A016116(n+1) = A163403(n+1).

A163346 a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 47, 309, 2009, 12983, 83623, 537621, 3452881, 22163527, 142219007, 912428949, 5853252329, 37546657463, 240841771063, 1544844588981, 9909085155361, 63559426007047, 407685301497167, 2614986216809589, 16773100233661049, 107586319349989943
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 25 2009

Keywords

Comments

Binomial transform of A163350. Fifth binomial transform of A163403.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+r)*(5+r)^n+(1-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 26 2009
    
  • Mathematica
    CoefficientList[Series[(1 - 3 x)/(1 - 10 x + 23 x^2), {x, 0, 21}], x] (* Michael De Vlieger, Jun 30 2016 *)
    LinearRecurrence[{10,-23}, {1, 7}, 50] (* G. C. Greubel, Dec 19 2016 *)
  • PARI
    Vec((1-3*x)/(1-10*x+23*x^2) + O(x^99)) \\ Altug Alkan, Jul 05 2016

Formula

a(n) = 10*a(n-1)-23*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
a(n) = ((1+sqrt(2))*(5+sqrt(2))^n + (1-sqrt(2))*(5-sqrt(2))^n)/2.
G.f.: (1-3*x)/(1-10*x+23*x^2).
E.g.f.: (sqrt(2)*sinh(sqrt(2)*x) + cosh(sqrt(2)*x))*exp(5*x). - Ilya Gutkovskiy, Jun 30 2016

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 26 2009
New name from G. C. Greubel, Dec 19 2016

A163350 a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 1, a(1) = 6.

Original entry on oeis.org

1, 6, 34, 188, 1028, 5592, 30344, 164464, 890896, 4824672, 26124832, 141453248, 765878336, 4146681216, 22451153024, 121555687168, 658129355008, 3563255219712, 19292230787584, 104452273224704, 565526954771456
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 25 2009

Keywords

Comments

Binomial transform of A102285. Fourth binomial transform of A163403. Inverse binomial transform of A163346.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+r)*(4+r)^n+(1-r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 26 2009
    
  • Mathematica
    LinearRecurrence[{8,-14},{1,6},30] (* Harvey P. Dale, May 08 2014 *)
  • PARI
    Vec((1-2*x)/(1-8*x+14*x^2) + O(x^50)) \\ G. C. Greubel, Dec 19 2016

Formula

a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 1, a(1) = 6.
a(n) = ((1+sqrt(2))*(4+sqrt(2))^n+(1-sqrt(2))*(4-sqrt(2))^n)/2.
G.f.: (1-2*x)/(1-8*x+14*x^2).
E.g.f.: exp(4*x)*( cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 19 2016

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 26 2009
New name from G. C. Greubel, Dec 19 2016

A163448 a(n) = 20*a(n-1) - 98*a(n-2) for n > 1; a(0) = 1, a(1) = 12.

Original entry on oeis.org

1, 12, 142, 1664, 19364, 224208, 2586488, 29757376, 341671696, 3917211072, 44860395232, 513321219584, 5870105658944, 67096633659648, 766662318616448, 8757776273683456, 100022618249257216, 1142190290164165632
Offset: 0

Views

Author

Klaus Brockhaus, Jul 27 2009

Keywords

Comments

Binomial transform of A163447. Tenth binomial transform of A163403.

Crossrefs

Programs

  • Magma
    [ n le 2 select 11*n-10 else 20*Self(n-1)-98*Self(n-2): n in [1..18] ];
    
  • Mathematica
    LinearRecurrence[{20,-98},{1,12},30] (* or *) With[{ms=10-Sqrt[2], ps=10+ Sqrt[2]},Table[Simplify[(31ms^n-41Sqrt[2](ms^n)+49ps^n+49Sqrt[2] ps^n)/ (98ps)],{n,20}]] (* Harvey P. Dale, Nov 14 2011 *)
  • PARI
    Vec((1-8*x)/(1-20*x+98*x^2) + O(x^50)) \\ G. C. Greubel, Dec 24 2016

Formula

a(n) = ((1+sqrt(2))*(10+sqrt(2))^n + (1-sqrt(2))*(10-sqrt(2))^n)/2.
G.f.: (1-8*x)/(1-20*x+98*x^2).
a(n) = (31*(10-sqrt(2))^n - 41*sqrt(2)*(10-sqrt(2))^n + 49*(10+sqrt(2))^n + 49*sqrt(2)*(10+sqrt(2))^n)/(98*(10+sqrt(2))). - Harvey P. Dale, Nov 14 2011
E.g.f.: exp(10*x)*( cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 24 2016
Previous Showing 21-26 of 26 results.