A363041 Triangle read by rows: T(n,k) = Stirling2(n+1,k)/binomial(k+1,2) if n-k is even, else 0 (1 <= k <= n).
1, 0, 1, 1, 0, 1, 0, 5, 0, 1, 1, 0, 15, 0, 1, 0, 21, 0, 35, 0, 1, 1, 0, 161, 0, 70, 0, 1, 0, 85, 0, 777, 0, 126, 0, 1, 1, 0, 1555, 0, 2835, 0, 210, 0, 1, 0, 341, 0, 14575, 0, 8547, 0, 330, 0, 1, 1, 0, 14421, 0, 91960, 0, 22407, 0, 495, 0, 1
Offset: 1
Examples
Triangle begins k = 1 2 3 4 5 6 7 8 9 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - n = 1: 1 2: 0 1 3: 1 0 1 4: 0 5 0 1 5: 1 0 15 0 1 6: 0 21 0 35 0 1 7: 1 0 161 0 70 0 1 8: 0 85 0 777 0 126 0 1 9: 1 0 1555 0 2835 0 210 0 1 10: 0 341 0 14575 0 8547 0 330 0 1 ... Matrix product (|A008275|)^-1 * A164652 * A008277 begins / 1 \ /1 \ /1 \ /1 \ |-1 1 | |0 1 | |1 1 | |0 1 | | 1 -3 1 | |1 0 1 | |1 3 1 | = |0 0 1 | |-1 7 -6 1 | |0 5 0 1 | |1 7 6 1 | |0 1 0 1 | | 1 -15 25 -10 1| |8 0 15 0 1| |1 15 25 10 1| |0 0 5 0 1 | | ... | |... | |... | |0 1 0 15 0 1| | | | | | | |... |
Programs
-
Maple
A362041:= (n, k)-> `if`(n-k mod 2 = 0, Stirling2(n+1,k)/binomial(k+1,2), 0): for n from 1 to 10 do seq(A362041(n,k), k = 1..n) od;
-
PARI
T(n,k) = if ((n-k) % 2, 0, stirling(n+1, k, 2)/binomial(k+1, 2)); \\ Michel Marcus, May 23 2023
Formula
Let P(n,x) = (1 - x)*(1 - 2*x)*...*(1 - n*x). The g.f. for the k-th column of the triangle is (1/(k*(k + 1)))*x^(k-1)*(1/P(k,x) - 1/P(k,-x)) = (x^k)*(x^k*R(k-1,1/x))/((1 - x^2)*(1 - 4*x^2)*...*(1 - k^2*x^2)), where R(n,x) denotes the n-th row polynomial of A164652. (Since the entries of triangle A164652 are integers, it follows that the entries of the present triangle are also integers.)
It appears that the matrix product (|A008275|)^-1 * A164652 * A008277 = I_1 + A363041 (direct sum, where I_1 is the 1 X 1 identity matrix). See the Example section.
The sequence of row sums of the inverse array begins [1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, ...], and appears to be essentially A129825.
Comments