cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A240104 Numbers with primitive root -19.

Original entry on oeis.org

2, 3, 6, 13, 26, 29, 31, 37, 41, 53, 58, 59, 62, 67, 71, 74, 79, 82, 89, 103, 106, 107, 113, 118, 134, 142, 158, 167, 173, 178, 179, 193, 206, 214, 223, 226, 227, 257, 269, 281, 293, 317, 331, 334, 337, 346, 358, 379, 383, 386, 401, 431, 433, 439, 446, 449
Offset: 1

Views

Author

Vincenzo Librandi, Apr 01 2014

Keywords

Crossrefs

Cf. numbers with positive primitive root r: A167791 (r=2), A167792 (r=3), A167793 (r=5), A167794 (r=6), A167795 (r=7), A167796 (r=8), A167797 (r=10), A240028 (r=11), A240030 (r=12), A240032 (r=13), A240094 (r=14), A240096 (r=15), A240101 (r=17), A240103 (r=18), A240106 (r=19).
Cf. numbers with negative primitive root r: A167798 (r=-2), A167799 (r=-3), A167800 (r=-4), A167801 (r=-5), A167802 (r=-6), A167803 (r=-7), A167804 (r=-8), A167805 (r=-9), A167806 (r=-10), A240029 (r=-11), A240031 (r=-12), A240093 (r=-13), A240095 (r=-14), A240097 (r=-15), A240100 (r=-17), A240102 (r=-18).

Programs

  • Mathematica
    pr = -19; Select[Range[2, 500], MultiplicativeOrder[pr, #] == EulerPhi[#] &]

A240106 Numbers with primitive root 19.

Original entry on oeis.org

2, 4, 7, 11, 13, 14, 22, 23, 26, 29, 37, 41, 43, 46, 47, 53, 58, 74, 82, 83, 86, 89, 94, 106, 113, 121, 139, 163, 166, 173, 178, 191, 193, 226, 239, 242, 251, 257, 263, 269, 278, 281, 293, 311, 317, 326, 337, 346, 347, 359, 367, 382, 386, 401, 419, 433, 443
Offset: 1

Views

Author

Vincenzo Librandi, Apr 01 2014

Keywords

Crossrefs

Cf. numbers with positive primitive root r: A167791 (r=2), A167792 (r=3), A167793 (r=5), A167794 (r=6), A167795 (r=7), A167796 (r=8), A167797 (r=10), A240028 (r=11), A240030 (r=12), A240032 (r=13), A240094 (r=14), A240096 (r=15), A240100 (r=17), A240103 (r=18).
Cf. numbers with negative primitive root r: A167798 (r=-2), A167799 (r=-3), A167800 (r=-4), A167801 (r=-5), A167802 (r=-6), A167803 (r=-7), A167804 (r=-8), A167805 (r=-9), A167806 (r=-10), A240029 (r=-11), A240031 (r=-12), A240093 (r=-13), A240095 (r=-14), A240097 (r=-15), A240100 (r=-17), A240102 (r=-18), A240104 (r=-19).

Programs

  • Mathematica
    pr = 19; Select[Range[2, 500], MultiplicativeOrder[pr, #] == EulerPhi[#] &]

A246717 Numbers of the form 2n - 1 such that A246702(n) = 2.

Original entry on oeis.org

7, 17, 23, 35, 41, 47, 49, 71, 77, 79, 95, 97, 103, 115, 137, 143, 167, 175, 191, 193, 199, 209, 235, 239, 245, 263, 271, 289, 295, 299, 311, 313, 319, 335, 343, 359, 367, 371, 383, 395, 401, 407, 409, 413, 415, 437, 449, 463, 475, 479, 487, 503, 515, 517, 521, 529, 535, 539, 551, 569, 575, 581, 583, 599, 607, 611, 647, 649, 667, 695, 707
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 15 2014

Keywords

Comments

From Antti Karttunen, Nov 15 2014: (Start)
Equally: Odd numbers n for which A246702((n+1)/2) = 2.
Primes in this sequence: 7, 17, 23, 41, 47, 71, 79, ... seem to be A115591.
A249819 gives the composite terms.
(End)

Crossrefs

Programs

  • PARI
    isA246717(n) = { if(!(n%2), return(0), my(u, s=0); u = n^2; for(k=1, u-1, if(!(((2^k)-1)%u), s++;if(s > 2, return(0)))); return(2==s)); }
    n = 0; i = 0; while(i < 105, n++; if(isA246717(n), i++; write("b246717.txt", i, " ", n))); \\ From Antti Karttunen, Nov 15 2014
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246717 (MATCHING-POS 1 1 (lambda (n) (and (odd? n) (= 2 (A246702 (/ (+ 1 n) 2)))))))

Extensions

Terms corrected by Antti Karttunen, Nov 15 2014

A219030 Powers of odd primes (exponent > 1) for which 2 is not a primitive root.

Original entry on oeis.org

49, 289, 343, 529, 961, 1681, 1849, 2209, 2401, 4913, 5041, 5329, 6241, 7921, 9409, 10609, 11881, 12167, 12769, 16129, 16807, 18769, 22801, 24649, 27889, 29791, 36481, 37249, 39601, 49729, 52441, 54289, 57121, 58081, 63001, 66049, 68921, 69169, 73441
Offset: 1

Views

Author

V. Raman, Nov 10 2012

Keywords

Crossrefs

Programs

  • PARI
    for(n=3,100000,if(n%2==1&&isprime(n)==0&&znorder(Mod(2,n))!=eulerphi(n)&&matsize(factor(n))[1]==1,print1(n",")))
    
  • PARI
    list(lim)=my(v=List(),L=log(lim+.5));forprime(p=3,sqrtint(lim\1), for(e=2,L\log(p), if(znorder(Mod(2,p^e))Charles R Greathouse IV, Nov 12 2012

A240107 Numbers with primitive root -20.

Original entry on oeis.org

11, 13, 17, 31, 37, 53, 59, 73, 79, 113, 121, 131, 137, 139, 157, 169, 173, 179, 191, 199, 211, 233, 239, 257, 271, 277, 289, 293, 313, 317, 331, 337, 353, 359, 379, 397, 419, 431, 433, 439, 479, 499, 557, 593, 599, 613, 631, 653, 659, 673, 677, 719, 751
Offset: 1

Views

Author

Vincenzo Librandi, Apr 01 2014

Keywords

Crossrefs

Cf. numbers with positive primitive root r: A167791 (r=2), A167792 (r=3), A167793 (r=5), A167794 (r=6), A167795 (r=7), A167796 (r=8), A167797 (r=10), A240028 (r=11), A240030 (r=12), A240032 (r=13), A240094 (r=14), A240096 (r=15), A240100 (r=17), A240103 (r=18), A240106 (r=19), A240108 (r=20).
Cf. numbers with negative primitive root r: A167798 (r=-2), A167799 (r=-3), A167800 (r=-4), A167801 (r=-5), A167802 (r=-6), A167803 (r=-7), A167804 (r=-8), A167805 (r=-9), A167806 (r=-10), A240029 (r=-11), A240031 (r=-12), A240093 (r=-13), A240095 (r=-14), A240097 (r=-15), A240100 (r=-17), A240102 (r=-18), A240104 (r=-19).

Programs

  • Mathematica
    pr = -20; Select[Range[2, 800], MultiplicativeOrder[pr, #] == EulerPhi[#] &]

A240108 Numbers with primitive root 20.

Original entry on oeis.org

3, 9, 13, 17, 23, 27, 37, 43, 47, 53, 67, 73, 81, 83, 103, 107, 113, 137, 157, 163, 167, 169, 173, 223, 227, 233, 243, 257, 263, 277, 283, 289, 293, 313, 317, 337, 347, 353, 367, 383, 397, 433, 443, 463, 467, 487, 503, 529, 547, 557, 563, 587, 593, 607
Offset: 1

Views

Author

Vincenzo Librandi, Apr 01 2014

Keywords

Crossrefs

Cf. numbers with positive primitive root r: A167791 (r=2), A167792 (r=3), A167793 (r=5), A167794 (r=6), A167795 (r=7), A167796 (r=8), A167797 (r=10), A240028 (r=11), A240030 (r=12), A240032 (r=13), A240094 (r=14), A240096 (r=15), A240100 (r=17), A240103 (r=18), A240106 (r=19).
Cf. numbers with negative primitive root r: A167798 (r=-2), A167799 (r=-3), A167800 (r=-4), A167801 (r=-5), A167802 (r=-6), A167803 (r=-7), A167804 (r=-8), A167805 (r=-9), A167806 (r=-10), A240029 (r=-11), A240031 (r=-12), A240093 (r=-13), A240095 (r=-14), A240097 (r=-15), A240100 (r=-17), A240102 (r=-18), A240104 (r=-19), A240107 (r=-20).

Programs

  • Mathematica
    pr = 20; Select[Range[2, 700], MultiplicativeOrder[pr, #] == EulerPhi[#] &]
    Join[{3,9,13,17},Select[Range[610],MemberQ[PrimitiveRootList[#],20]&]] (* Harvey P. Dale, Jul 17 2025 *)

A246719 Smallest natural number m for which there are exactly n distinct values k such that 0 < k < m^2 and 2^k - 1 is divisible by m^2.

Original entry on oeis.org

1, 3, 7, 15, 113, 65, 31, 91, 73, 39, 21, 331, 267, 55, 217, 435, 203, 697, 127, 703, 565, 429, 451, 231, 595, 253, 105, 327, 171, 1045, 1335, 255, 385, 497, 341, 1295, 219, 455, 155, 1417, 969, 165, 2143, 861, 357, 453, 555, 2821, 195, 1477, 301, 205, 2091
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Nov 15 2014

Keywords

Comments

Smallest odd number of the form 2q - 1 such that A246702(q) = n.
Additional terms include: a(426) = 1705, a(451) = 903, a(516) = 2067, a(536) = 2145, a(563) = 2255, a(566) = 2265, a(593) = 2373, a(761) = 3045, a(770) = 3081, a(786) = 2359, a(1333) = 2667, and a(3282) = 1093. - Kevin P. Thompson, Nov 26 2021

Examples

			The first occurrence of 3 in the sequence A246702 occurs at n = 8. Therefore, a(3) = 2n - 1 = 2*8 - 1 = 15.
		

Crossrefs

Cf. Numbers of the form 2n - 1 such that A246702(n) = i: number 1 (i = 0), A167791 (i = 1), A246717 (i = 2), A246755 (i = 3).

Programs

  • Mathematica
    NumK[m_]:=NumK[m]=(m2=m^2;nk=0;Do[If[Mod[2^i,m2]==1,nk++],{i,m2-1}];nk)
    nterms=10;Table[m=0;While[NumK[++m]!=n];m,{n,0,nterms-1}] (* Paolo Xausa, Nov 30 2021 *)
  • PARI
    isok(m, n) = {my(v = vector(m^2-1, k, Mod(2, m^2)^k == 1)); vecsum(v) == n;}
    a(n) = {my(m=1); while (!isok(m, n), m++); m;} \\ Michel Marcus, Nov 27 2021

Extensions

Name corrected by Antti Karttunen, Nov 18 2014
Multiple corrections and new terms a(17)-a(52) from Kevin P. Thompson, Nov 26 2021

A246755 Numbers of the form 2k - 1 such that A246702(k) = 3.

Original entry on oeis.org

15, 33, 43, 45, 69, 75, 87, 99, 109, 135, 141, 157, 159, 177, 207, 213, 225, 229, 249, 261, 277, 283, 297, 303, 307, 321, 363, 375, 393, 405, 423, 447, 477, 499, 501, 519, 531, 537, 573, 591, 621, 639, 643, 675, 681, 691, 717, 733, 739, 747, 783, 789, 807, 811
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 15 2014

Keywords

Comments

Composites in this sequence: 15, 33, 45, 69, 75, 87, 99, 135, 141, 159, 177, 207, 213, 225, 249, 261, 297, 303, 321, 363, 375, 393, 405, 423, 447, 477, ...

Examples

			A246702(8) = 3 for the first time, hence a(1) = 2*8 - 1 = 15.
		

Crossrefs

Cf. Numbers of the form 2k - 1 such that A246702(k) = m: number 1 (m = 0), A167791 (m = 1), A246717 (m = 2), this sequence (m = 3), A001133 (primes in this sequence).

Programs

  • PARI
    is(k) = (m=Mod(k%2, k*k)) && sum(i=1, k*k-1, m*=2; m==1) == 3; \\ Jinyuan Wang, May 15 2020

Extensions

More terms from and terms corrected by Jinyuan Wang, May 15 2020

A319009 Numbers k such that the multiplicative order of 2 modulo k is psi(k), psi = A002322.

Original entry on oeis.org

1, 3, 5, 9, 11, 13, 15, 19, 21, 25, 27, 29, 33, 35, 37, 39, 45, 53, 55, 57, 59, 61, 63, 65, 67, 69, 75, 77, 81, 83, 87, 91, 95, 99, 101, 105, 107, 111, 115, 117, 121, 125, 131, 133, 135, 139, 141, 143, 145, 147, 149, 159, 163, 165, 169, 171, 173, 175, 177, 179, 181
Offset: 1

Views

Author

Jianing Song, Sep 07 2018

Keywords

Comments

Numbers k such that the multiplicative order of 2 modulo k is at its maximum possible value.
Numbers k such that the binary expansion of 1/k has period psi(n).
Numbers k such that A002326((k-1)/2) = A002322(k).
This is a generalization of A167791, so A167791 is a proper subsequence.
Write k as k = Product_{i=1..t} (p_i)^(e_i) where p_i are distinct primes. If (p_i)^(e_i) belongs to A167791 (and thus here) for 1 <= i <= t, then k is also here, but the converse is not true. In fact, this sequence has terms such that none of (p_i)^(e_i) belongs to A167791, the smallest of which is 301 = 7*43. The multiplicative order of 2 modulo 7 and 43 are 3 (< psi(7) = 6) and 14 (< psi(43) = 42), so the multiplicative order of 2 modulo 301 is lcm(3, 14) = 42 = psi(301).

Examples

			The multiplicative order of 2 modulo 15 is 4 = A002322(15), so 15 is a term.
The multiplicative order of 2 modulo 21 is 6 = A002322(21), so 21 is a term.
The multiplicative order of 2 modulo 51 is 8, but A002322(51) = 16, so 51 is not a term.
		

Crossrefs

Programs

  • Maple
    select(n -> numtheory:-order(2,n)=numtheory:-lambda(n), [seq(i,i=1..1000,2)]); # Robert Israel, Sep 12 2018
  • PARI
    forstep(n=1, 200, 2, if(znorder(Mod(2, n))==lcm(znstar(n)[2]), print1(n, ", ")))
Previous Showing 21-29 of 29 results.