cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 1233 results. Next

A163440 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576135, 8064420, 112881405, 1580053020, 22116729180, 309578036040, 4333306233165, 60655281460410, 849019887139515, 11884122064943310, 166347525415813560, 2328442863574420320
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6) )); // G. C. Greubel, May 12 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{13, 13, 13, 13, -91}, {15, 210, 2940, 41160, 576135}, 30] (* G. C. Greubel, Dec 23 2016 *)
    coxG[{5, 91, -13}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6)) \\ G. C. Greubel, Dec 23 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
a(n) = 13*a(n-1)+13*a(n-2)+13*a(n-3)+13*a(n-4)-91*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163441 Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 16, 240, 3600, 54000, 809880, 12146400, 182169120, 2732133600, 40975956000, 614548634280, 9216869130000, 138232634196720, 2073183516810000, 31093163487414000, 466328623499110680, 6993897072666789600
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170735, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-15*x+119*x^5-105*x^6) )); // G. C. Greubel, May 13 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-15*x+119*x^5-105*x^6), {x, 0, 20}], x] (* or *) LinearRecurrence[{14, 14, 14, 14, -105}, {1, 16, 240, 3600, 54000, 809880}, 20] (* G. C. Greubel, Dec 23 2016 *)
    coxG[{5, 105, -14}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-15*x+119*x^5-105*x^6)) \\ G. C. Greubel, Dec 23 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-15*x+119*x^5-105*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(105*t^5 - 14*t^4 - 14*t^3 - 14*t^2 - 14*t + 1).
a(n) = 14*a(n-1)+14*a(n-2)+14*a(n-3)+14*a(n-4)-105*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163451 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 17, 272, 4352, 69632, 1113976, 17821440, 285108360, 4561178880, 72969984000, 1167377713080, 18675771192000, 298775988016200, 4779834262113600, 76468044587443200, 1223339873805905400, 19571056837109136000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6) )); // G. C. Greubel, May 13 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6), {x, 0, 20}], x] (* G. C. Greubel, Dec 24 2016 *)
    coxG[{5, 120, -15}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6)) \\ G. C. Greubel, Dec 24 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).
a(n) = 15*a(n-1)+15*a(n-2)+15*a(n-3)+15*a(n-4)-120*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163452 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503225, 25552224, 434343744, 7383094560, 125499873024, 2133281378232, 36262103930496, 616393221671808, 10477621608796800, 178101495469706112, 3027418232198243904, 51460888233840150528
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6) )); // G. C. Greubel, May 13 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6), {x, 0, 20}], x] (* or *)  LinearRecurrence[{16,16,16,16,-136}, {1, 18, 306, 5202, 88434, 1503225}, 20] (* G. C. Greubel, Dec 24 2016 *)
    coxG[{5, 136, -16}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6)) \\ G. C. Greubel, Dec 24 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1).
a(n) = 16*a(n-1)+16*a(n-2)+16*a(n-3)+16*a(n-4)-136*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163453 Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 19, 342, 6156, 110808, 1994373, 35895636, 646066215, 11628197676, 209289662676, 3766891838382, 67798255971825, 1220264268268608, 21962878883360919, 395298019772086050, 7114756005603413388
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170738, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-18*x+170*x^5-153*x^6) )); // G. C. Greubel, May 13 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-18*x+170*x^5-153*x^6), {x, 0, 20}], x] (* or *) LinearRecurrence[{17, 17, 17, 17, -153}, {1, 19, 342, 6156, 110808, 1994373}, 20] (* G. C. Greubel, Dec 24 2016 *)
    coxG[{5, 153, -17}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-18*x+170*x^5-153*x^6)) \\ G. C. Greubel, Dec 24 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-18*x+170*x^5-153*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1).
a(n) = 17*a(n-1)+17*a(n-2)+17*a(n-3)+17*a(n-4)-153*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163454 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 20, 380, 7220, 137180, 2606230, 49514760, 940712040, 17872229160, 339547661640, 6450936451470, 122558879953620, 2328449391567180, 44237321450224020, 840447989197392780, 15967350630411275430
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6) )); // G. C. Greubel, May 13 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6), {x, 0, 20}], x] (* or *) LinearRecurrence[{18, 18, 18, 18, -171}, {1, 20, 380, 7220, 137180, 2606230}, 20] (* G. C. Greubel, Dec 24 2016 *)
    coxG[{5, 171, -18}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6)) \\ G. C. Greubel, Dec 24 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1).
a(n) = 18*a(n-1)+18*a(n-2)+18*a(n-3)+18*a(n-4)-171*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163503 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3359790, 67191600, 1343748210, 26873288400, 537432252000, 10747974763890, 214946090593500, 4298653734898110, 85967713492846500, 1719247052441058000, 34382796834223386990
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6) )); // G. C. Greubel, May 16 2019
    
  • Mathematica
    coxG[{5,190,-19}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 09 2015 *)
    CoefficientList[Series[(1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6), {x,0,20}], x] (* G. C. Greubel, Jul 26 2017 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6)) \\ G. C. Greubel, Jul 26 2017
    
  • Sage
    ((1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).
a(n) = 19*a(n-1)+19*a(n-2)+19*a(n-3)+19*a(n-4)-190*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163514 Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 22, 462, 9702, 203742, 4278351, 89840520, 1886549280, 39615400440, 831878586000, 17468509071090, 366818925627000, 7702782398341800, 161749714998425400, 3396561002126245800, 71323937982067871100
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170741, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-21*x+230*x^5-210*x^6) )); // G. C. Greubel, May 16 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-21*x+230*x^5-210*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *)
    coxG[{5, 210, -20}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 16 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-21*x+230*x^5-210*x^6)) \\ G. C. Greubel, Jul 27 2017
    
  • Sage
    ((1+x)*(1-x^5)/(1-21*x+230*x^5-210*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^5 - 20*t^4 - 20*t^3 - 20*t^2 - 20*t + 1).
a(n) = -210*a(n-5) + 20*Sum_{k=1..4} a(n-k). - Wesley Ivan Hurt, May 05 2021

A163518 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387635, 118522404, 2607370689, 57359466780, 1261849124844, 27759379635372, 610677728876061, 13434280356535038, 295540315560771435, 6501582206394337062, 143028104664155140584
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6) )); // G. C. Greubel, May 16 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *)
    coxG[{5, 231, -21}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 16 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6)) \\ G. C. Greubel, Jul 27 2017
    
  • Sage
    ((1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
a(n) = 21*a(n-1)+21*a(n-2)+21*a(n-3)+21*a(n-4)-231*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163519 Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 24, 552, 12696, 292008, 6715908, 154459536, 3552423600, 81702391056, 1879077904176, 43217018799372, 993950655137880, 22859927229943848, 525756756894338904, 12091909332851083560, 278102505382114851108
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170743, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-23*x+275*x^5-253*x^6) )); // G. C. Greubel, May 16 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-23*x+275*x^5-253*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *)
    coxG[{5,253,-22}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 16 2018 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-23*x+275*x^5-253*x^6)) \\ G. C. Greubel, Jul 27 2017
    
  • Sage
    ((1+x)*(1-x^5)/(1-23*x+275*x^5-253*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(253*t^5 - 22*t^4 - 22*t^3 - 22*t^2 - 22*t + 1).
a(n) = 22*a(n-1)+22*a(n-2)+22*a(n-3)+22*a(n-4)-253*a(n-5). - Wesley Ivan Hurt, May 10 2021
Previous Showing 101-110 of 1233 results. Next