A163440
Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 15, 210, 2940, 41160, 576135, 8064420, 112881405, 1580053020, 22116729180, 309578036040, 4333306233165, 60655281460410, 849019887139515, 11884122064943310, 166347525415813560, 2328442863574420320
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{13, 13, 13, 13, -91}, {15, 210, 2940, 41160, 576135}, 30] (* G. C. Greubel, Dec 23 2016 *)
coxG[{5, 91, -13}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6)) \\ G. C. Greubel, Dec 23 2016
-
((1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163441
Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 16, 240, 3600, 54000, 809880, 12146400, 182169120, 2732133600, 40975956000, 614548634280, 9216869130000, 138232634196720, 2073183516810000, 31093163487414000, 466328623499110680, 6993897072666789600
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-15*x+119*x^5-105*x^6) )); // G. C. Greubel, May 13 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-15*x+119*x^5-105*x^6), {x, 0, 20}], x] (* or *) LinearRecurrence[{14, 14, 14, 14, -105}, {1, 16, 240, 3600, 54000, 809880}, 20] (* G. C. Greubel, Dec 23 2016 *)
coxG[{5, 105, -14}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-15*x+119*x^5-105*x^6)) \\ G. C. Greubel, Dec 23 2016
-
((1+x)*(1-x^5)/(1-15*x+119*x^5-105*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019
A163451
Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 17, 272, 4352, 69632, 1113976, 17821440, 285108360, 4561178880, 72969984000, 1167377713080, 18675771192000, 298775988016200, 4779834262113600, 76468044587443200, 1223339873805905400, 19571056837109136000
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6) )); // G. C. Greubel, May 13 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6), {x, 0, 20}], x] (* G. C. Greubel, Dec 24 2016 *)
coxG[{5, 120, -15}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6)) \\ G. C. Greubel, Dec 24 2016
-
((1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019
A163452
Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 18, 306, 5202, 88434, 1503225, 25552224, 434343744, 7383094560, 125499873024, 2133281378232, 36262103930496, 616393221671808, 10477621608796800, 178101495469706112, 3027418232198243904, 51460888233840150528
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6) )); // G. C. Greubel, May 13 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6), {x, 0, 20}], x] (* or *) LinearRecurrence[{16,16,16,16,-136}, {1, 18, 306, 5202, 88434, 1503225}, 20] (* G. C. Greubel, Dec 24 2016 *)
coxG[{5, 136, -16}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6)) \\ G. C. Greubel, Dec 24 2016
-
((1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019
A163453
Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 19, 342, 6156, 110808, 1994373, 35895636, 646066215, 11628197676, 209289662676, 3766891838382, 67798255971825, 1220264268268608, 21962878883360919, 395298019772086050, 7114756005603413388
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-18*x+170*x^5-153*x^6) )); // G. C. Greubel, May 13 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-18*x+170*x^5-153*x^6), {x, 0, 20}], x] (* or *) LinearRecurrence[{17, 17, 17, 17, -153}, {1, 19, 342, 6156, 110808, 1994373}, 20] (* G. C. Greubel, Dec 24 2016 *)
coxG[{5, 153, -17}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-18*x+170*x^5-153*x^6)) \\ G. C. Greubel, Dec 24 2016
-
((1+x)*(1-x^5)/(1-18*x+170*x^5-153*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019
A163454
Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 20, 380, 7220, 137180, 2606230, 49514760, 940712040, 17872229160, 339547661640, 6450936451470, 122558879953620, 2328449391567180, 44237321450224020, 840447989197392780, 15967350630411275430
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6) )); // G. C. Greubel, May 13 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6), {x, 0, 20}], x] (* or *) LinearRecurrence[{18, 18, 18, 18, -171}, {1, 20, 380, 7220, 137180, 2606230}, 20] (* G. C. Greubel, Dec 24 2016 *)
coxG[{5, 171, -18}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6)) \\ G. C. Greubel, Dec 24 2016
-
((1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019
A163503
Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 21, 420, 8400, 168000, 3359790, 67191600, 1343748210, 26873288400, 537432252000, 10747974763890, 214946090593500, 4298653734898110, 85967713492846500, 1719247052441058000, 34382796834223386990
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6) )); // G. C. Greubel, May 16 2019
-
coxG[{5,190,-19}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 09 2015 *)
CoefficientList[Series[(1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6), {x,0,20}], x] (* G. C. Greubel, Jul 26 2017 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6)) \\ G. C. Greubel, Jul 26 2017
-
((1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
A163514
Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 22, 462, 9702, 203742, 4278351, 89840520, 1886549280, 39615400440, 831878586000, 17468509071090, 366818925627000, 7702782398341800, 161749714998425400, 3396561002126245800, 71323937982067871100
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-21*x+230*x^5-210*x^6) )); // G. C. Greubel, May 16 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-21*x+230*x^5-210*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *)
coxG[{5, 210, -20}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 16 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-21*x+230*x^5-210*x^6)) \\ G. C. Greubel, Jul 27 2017
-
((1+x)*(1-x^5)/(1-21*x+230*x^5-210*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
A163518
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 23, 506, 11132, 244904, 5387635, 118522404, 2607370689, 57359466780, 1261849124844, 27759379635372, 610677728876061, 13434280356535038, 295540315560771435, 6501582206394337062, 143028104664155140584
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6) )); // G. C. Greubel, May 16 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *)
coxG[{5, 231, -21}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 16 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6)) \\ G. C. Greubel, Jul 27 2017
-
((1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
A163519
Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 24, 552, 12696, 292008, 6715908, 154459536, 3552423600, 81702391056, 1879077904176, 43217018799372, 993950655137880, 22859927229943848, 525756756894338904, 12091909332851083560, 278102505382114851108
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-23*x+275*x^5-253*x^6) )); // G. C. Greubel, May 16 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-23*x+275*x^5-253*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *)
coxG[{5,253,-22}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 16 2018 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-23*x+275*x^5-253*x^6)) \\ G. C. Greubel, Jul 27 2017
-
((1+x)*(1-x^5)/(1-23*x+275*x^5-253*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
Comments