A163988
Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 22, 462, 9702, 203742, 4278582, 89849991, 1886844960, 39623642520, 832094358480, 17473936704840, 366951729513600, 7705966552789890, 161824882502745000, 3398313815357307000, 71364407061765925800
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7) )); // G. C. Greubel, Apr 25 2019
-
CoefficientList[Series[(1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7), {x,0,20}], x] (* G. C. Greubel, Aug 24 2017 *)
coxG[{6, 210, -20, 20}] (* The coxG program is at A169452 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7)) \\ G. C. Greubel, Aug 24 2017, modified Apr 25 2019
-
((1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A163991
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 23, 506, 11132, 244904, 5387888, 118533283, 2607726660, 57369864321, 1262134326684, 27766896042732, 610870411765152, 13439120433048156, 295660019761129485, 6504506579923898238, 143098839952914095019, 3148167773259336785958, 69259543486514630343864
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7) )); // G. C. Greubel, Apr 25 2019
-
CoefficientList[Series[(1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7), {x,0,20}], x] (* G. C. Greubel, Aug 24 2017, modified Apr 25 2019 *)
coxG[{6, 231, -21}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7)) \\ G. C. Greubel, Aug 24 2017, modified Apr 25 2019
-
((1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A164330
Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 45, 1980, 87120, 3833280, 168664320, 7421229090, 326534036400, 14367495685950, 632169725893200, 27815464230602400, 1223880262963776000, 53850724390367020710, 2369431557254469630780, 104254974618644628784170
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7) )); // G. C. Greubel, Apr 25 2019
-
CoefficientList[Series[(1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7), {x,0,20}], x] (* G. C. Greubel, Sep 14 2017, modified Apr 25 2019 *)
coxG[{6, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7)) \\ G. C. Greubel, Sep 14 2017, modified Apr 25 2019
-
((1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A164332
Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 47, 2162, 99452, 4574792, 210440432, 9680258791, 445291854660, 20483423028045, 942237354119580, 43342913451658140, 1993773796235517600, 91713584389960162440, 4218824411042032288125, 194065901246713684538250
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-46*x+1080*x^6-1035*x^7) )); // G. C. Greubel, Apr 25 2019
-
CoefficientList[Series[(1+x)*(1-x^6)/(1-46*x+1080*x^6-1035*x^7), {x, 0, 20}], x] (* G. C. Greubel, Sep 14 2017, modified Apr 25 2019 *)
coxG[{6, 1035, -45}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-46*x+1080*x^6-1035*x^7)) \\ G. C. Greubel, Sep 14 2017, modified Apr 25 2019
-
((1+x)*(1-x^6)/(1-46*x+1080*x^6-1035*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A164348
Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 48, 2256, 106032, 4983504, 234224688, 11008559208, 517402229760, 24317902308096, 1142941291421184, 53718235195007232, 2524756795581284352, 118663557238871024856, 5577186619014877732560, 262127744246735162576688
Offset: 0
-
a:=[48, 2256, 106032, 4983504, 234224688, 11008559208];; for n in [7..20] do a[n]:=46*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -1081*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 24 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^6)/(1-47*t+1127*t^6-1081*t^7) )); // G. C. Greubel, Aug 24 2019
-
seq(coeff(series((1+t)*(1-t^6)/(1-47*t+1127*t^6-1081*t^7), t, n+1), t, n), n = 0..20); # G. C. Greubel, Aug 24 2019
-
CoefficientList[Series[(1+t)*(1-t^6)/(1-47*t+1127*t^6-1081*t^7), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2017 *)
coxG[{6, 1081, -46}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 24 2019 *)
-
my(t='t+O('t^20)); Vec((1+t)*(1-t^6)/(1-47*t+1127*t^6-1081*t^7)) \\ G. C. Greubel, Sep 15 2017
-
def A164348_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-47*t+1127*t^6-1081*t^7)).list()
A164348_list(20) # G. C. Greubel, Aug 24 2019
A164369
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9072, 54432, 326571, 1959300, 11755065, 70525980, 423129420, 2538617760, 15230754000, 91378809060, 548238566925, 3289225689750, 19734119944875, 118397314970550, 710339464409400, 4261770250642800
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8) )); // G. C. Greubel, Apr 25 2019
-
CoefficientList[Series[(1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8), {x, 0, 30}], x] (* G. C. Greubel, Sep 17 2017, modified Apr 25 2019 *)
coxG[{7, 15, -5, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8)) \\ G. C. Greubel, Sep 17 2017, modified Apr 25 2019
-
((1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A164664
Number of reduced words of length n in Coxeter group on 28 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
Original entry on oeis.org
1, 28, 756, 20412, 551124, 14880348, 401769396, 10847773314, 292889869272, 7908026195160, 213516699839352, 5764950695053368, 155653663349994264, 4202648764205784984, 113471512684966713186, 3063730735882188973692
Offset: 0
-
a:=[28,756,20412,551124,14880348,401769396,10847773314];; for n in [8..30] do a[n]:=26*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -351*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Sep 15 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^7)/(1-27*t+377*t^7-351*t^8) )); // G. C. Greubel, Sep 15 2019
-
seq(coeff(series((1+t)*(1-t^7)/(1-27*t+377*t^7-351*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Sep 15 2019
-
CoefficientList[Series[(t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(351*t^7 - 26*t^6 - 26*t^5 - 26*t^4 - 26*t^3 - 26*t^2 - 26*t + 1), {t, 0, 20}], t] (* Wesley Ivan Hurt, Apr 25 2017 *)
coxG[{7,351,-26}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 13 2018 *)
-
my(t='t+O('t^20)); Vec((1+t)*(1-t^7)/(1-27*t+377*t^7-351*t^8)) \\ G. C. Greubel, Sep 15 2019
-
def A164664_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^7)/(1-27*t+377*t^7-351*t^8)).list()
A164664_list(20) # G. C. Greubel, Sep 15 2019
A164667
Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
Original entry on oeis.org
1, 31, 930, 27900, 837000, 25110000, 753300000, 22598999535, 677969972100, 20339098744965, 610172949807900, 18305188118005500, 549155632253220000, 16474668628988250000, 494240048711397215760, 14827201156594414216125
Offset: 0
-
a:=[31, 930, 27900, 837000, 25110000, 753300000, 22598999535];; for n in [8..20] do a[n]:=29*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -435*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Sep 15 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8) )); // G. C. Greubel, Sep 15 2019
-
seq(coeff(series((1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8), t, n+1), t, n), n = 0 .. 20); # G. C. Greubel, Sep 15 2019
-
CoefficientList[Series[(1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2019 *)
coxG[{7, 435, -29}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 15 2019 *)
-
my(t='t+O('t^20)); Vec((1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8)) \\ G. C. Greubel, Sep 15 2019
-
def A164667_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8)).list()
A164667_list(20) # G. C. Greubel, Sep 15 2019
A164670
Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
Original entry on oeis.org
1, 34, 1122, 37026, 1221858, 40321314, 1330603362, 43909910385, 1449027024192, 47817891187968, 1577990389060800, 52073682174315648, 1718431489817621568, 56708238440133282816, 1871371844637407092464, 61755270084763733187072
Offset: 0
-
a:=[34, 1122, 37026, 1221858, 40321314, 1330603362, 43909910385];; for n in [8..20] do a[n]:=32*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -528*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Sep 15 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^7)/(1-33*t+560*t^7-528*t^8) )); // G. C. Greubel, Sep 15 2019
-
seq(coeff(series((1+t)*(1-t^7)/(1-33*t+560*t^7-528*t^8), t, n+1), t, n), n = 0 .. 20); # G. C. Greubel, Sep 15 2019
-
CoefficientList[Series[(1+t)*(1-t^7)/(1-33*t+560*t^7-528*t^8), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2019 *)
coxG[{7, 528, -32}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 15 2019 *)
-
my(t='t+O('t^20)); Vec((1+t)*(1-t^7)/(1-33*t+560*t^7-528*t^8)) \\ G. C. Greubel, Sep 15 2019
-
def A164670_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^7)/(1-33*t+560*t^7-528*t^8)).list()
A164670_list(20) # G. C. Greubel, Sep 15 2019
A164681
Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
Original entry on oeis.org
1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518235, 4462207664772, 169563890192073, 6443427786666780, 244850254349321868, 9304309606601631648, 353563762821303227856, 13435422902486289765684
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^7)/(1 -38*x +740*x^7 -703*x^8) )); // G. C. Greubel, Apr 26 2019
-
CoefficientList[Series[(x^7 + 2 x^6 + 2 x^5 + 2 x^4 + 2 x^3 + 2 x^2 + 2 x + 1)/(703 x^7 - 37 x^6 - 37 x^5 - 37 x^4 - 37 x^3 - 37 x^2 - 37 x + 1), {x, 0, 20}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
coxG[{7, 703, -37}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^7)/(1-38*x+740*x^7-703*x^8)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^7)/(1 -38*x +740*x^7 -703*x^8)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
Comments