cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A280456 Expansion of Product_{k>=0} (1 + x^(6*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 1, 3, 3, 1, 0, 0, 1, 4, 4, 1, 0, 0, 1, 4, 5, 2, 0, 0, 1, 5, 7, 3, 0, 0, 1, 5, 8, 5, 1, 0, 1, 6, 10, 6, 1, 0, 1, 6, 12, 9, 2, 0, 1, 7, 14, 11, 3, 0, 1, 7, 16, 15, 5, 0, 1, 8, 19, 18, 7, 1, 1, 8, 21, 23, 10, 1, 1, 9, 24
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 03 2017

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 mod 6.
Convolution of A281244 and A280456 is A098884. - Vaclav Kotesovec, Jan 18 2017

Examples

			a(32) = 3 because we have [31, 1], [25, 7] and [19, 13].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[(1 + x^(6 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 6] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Product_{k>=0} (1 + x^(6*k+1)).
a(n) ~ exp(Pi*sqrt(n)/(3*sqrt(2)))/(2*2^(5/12)*sqrt(3)*n^(3/4)) * (1 + (Pi/(144*sqrt(2)) - 9/(4*sqrt(2)*Pi)) / sqrt(n)). - Ilya Gutkovskiy, Jan 03 2017, extended by Vaclav Kotesovec, Jan 18 2017

A284313 Expansion of Product_{k>=0} (1 - x^(4*k+1)) in powers of x.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 2, -1, 0, -1, 2, -1, 0, -1, 3, -2, 0, -1, 3, -3, 1, -1, 4, -4, 1, -1, 4, -5, 2, -1, 5, -7, 3, -1, 5, -8, 5, -2, 6, -10, 6, -2, 6, -12, 9, -3, 7, -14, 11, -4, 7, -16, 15, -6, 8, -19, 18, -8, 9, -21, 23, -11, 10, -24
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(m*k+1)): A081362 (m=2), A284312 (m=3), this sequence (m=4), A284314 (m=5).

Programs

  • Maple
    V:= Vector(100):
    V[1]:= 1:
    for k from 0 to 24 do
      V[4*k+2..100]:= V[4*k+2..100] - V[1..99-4*k]
    od:
    convert(V,list); # Robert Israel, May 03 2017
  • Mathematica
    CoefficientList[Series[Product[1 - x^(4k + 1), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    Vec(prod(k=0, 100, 1 - x^(4*k + 1)) + O(x^101)) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n) = -(1/n)*Sum_{k=1..n} A050449(k)*a(n-k), a(0) = 1.
O.g.f.: Sum_{n >= 0} (-1)^n*x^(n*(2*n-1)) / Product_{k = 1..n} ( 1 - x^(4*k) ). Cf. A284316. - Peter Bala, Nov 28 2020

A339059 Number of compositions (ordered partitions) of n into distinct parts congruent to 1 mod 4.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 4, 6, 0, 1, 4, 6, 0, 1, 6, 12, 0, 1, 6, 18, 24, 1, 8, 24, 24, 1, 8, 30, 48, 1, 10, 42, 72, 1, 10, 48, 120, 121, 12, 60, 144, 121, 12, 72, 216, 241, 14, 84, 264, 361, 14, 96, 360, 601, 16, 114, 432, 841, 736, 126, 552, 1201, 738
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 22 2020

Keywords

Examples

			a(15) = 6 because we have [9, 5, 1], [9, 1, 5], [5, 9, 1], [5, 1, 9], [1, 9, 5] and [1, 5, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[k! x^(k (2 k - 1))/Product[1 - x^(4 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} k! * x^(k*(2*k - 1)) / Product_{j=1..k} (1 - x^(4*j)).

A261634 Expansion of Product_{k>=0} (1+x^(4*k+1))^3.

Original entry on oeis.org

1, 3, 3, 1, 0, 3, 9, 9, 3, 3, 12, 18, 12, 6, 18, 37, 33, 15, 22, 54, 66, 42, 36, 81, 114, 84, 57, 112, 189, 171, 109, 156, 279, 294, 201, 222, 405, 486, 360, 328, 564, 747, 617, 504, 783, 1123, 1017, 783, 1065, 1602, 1605
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^(4*k+1))^3, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n)/2) / (2^(5/4) * n^(3/4)).

A301507 Expansion of Product_{k>=0} (1 + x^(4*k+1))*(1 + x^(4*k+2)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 8, 9, 10, 11, 13, 14, 14, 16, 18, 20, 23, 24, 27, 30, 31, 34, 37, 41, 46, 49, 53, 58, 62, 67, 73, 80, 88, 94, 101, 109, 117, 127, 136, 147, 161, 172, 184, 198, 211, 228, 245, 262, 284, 304, 324, 347, 370, 397, 425, 454, 488
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 or 2 mod 4.

Examples

			a(11) = 3 because we have [10, 1], [9, 2] and [6, 5].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k + 1)) (1 + x^(4 k + 2)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[QPochhammer[-x, x^4] QPochhammer[-x^2, x^4], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{1, 2}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A042963(k)).
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(3/2)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 23 2018

A170975 Expansion of Product_{i=0..m-1} (1 + x^(4*i+1)) for m = 12.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 3, 1, 1, 4, 4, 1, 1, 4, 5, 2, 1, 5, 7, 3, 1, 5, 8, 5, 2, 6, 10, 6, 1, 5, 12, 9, 2, 5, 13, 11, 3, 4, 14, 15, 5, 4, 15, 17, 7, 4, 15, 21, 10, 4, 15, 23, 13, 4, 15, 27, 17, 5, 14, 28, 21, 6, 13, 31, 26, 8, 12, 31, 30, 11, 11
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Crossrefs

Programs

  • Magma
    m:=12; R:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (&*[1+x^(4*j+1): j in [0..m-1]]) )); // G. C. Greubel, Feb 24 2019
    
  • Maple
    seq(coeff(mul((1+x^(4*i+1)),i=0..11),x,n),n=0..100); # Nathaniel Johnston, Jun 24 2011
  • Mathematica
    With[{m=12}, CoefficientList[Series[Product[(1 + x^(4*j+1)), {j,0,m-1}], {x,0,100}],x]] (* G. C. Greubel, Feb 24 2019 *)
  • PARI
    m=12; my(x='x+O('x^(100))); Vec(prod(j=0,m-1, 1+x^(4*j+1) )) \\ G. C. Greubel, Feb 24 2019
    
  • Sage
    m=12; ( prod(1+x^(4*j+1) for j in (0..m-1)) ).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, Feb 24 2019

Formula

a(n) = a(276-n). - Rick L. Shepherd, Mar 01 2013

Extensions

Typo in Maple program fixed and b-file extended 9 terms by Rick L. Shepherd, Mar 01 2013

A261630 Expansion of Product_{k>=0} (1+x^(4*k+1))^2.

Original entry on oeis.org

1, 2, 1, 0, 0, 2, 4, 2, 0, 2, 5, 4, 1, 2, 8, 10, 4, 2, 9, 14, 9, 4, 12, 22, 16, 6, 13, 30, 30, 14, 17, 40, 44, 24, 21, 50, 66, 42, 29, 64, 92, 66, 41, 78, 127, 106, 62, 96, 164, 152, 93, 120, 215, 220, 139, 150, 269, 302, 205, 192, 340, 412, 296, 248, 417
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=80; CoefficientList[Series[Product[(1+x^(4*k+1))^2, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/6)) / (2 * 6^(1/4) * n^(3/4)).

A261638 Expansion of Product_{k>=0} (1+x^(4*k+1))^4.

Original entry on oeis.org

1, 4, 6, 4, 1, 4, 16, 24, 16, 8, 22, 48, 52, 32, 38, 92, 128, 96, 70, 140, 245, 244, 172, 228, 417, 488, 374, 380, 680, 924, 798, 676, 1044, 1560, 1542, 1256, 1625, 2524, 2778, 2304, 2537, 3892, 4716, 4156, 4076, 5908, 7650, 7196, 6592, 8796, 11938
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Comments

In general, if j > 0, a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k+b))^j, then a(n) ~ 2^((j-3)/2 - j*b/a) * j^(1/4) * exp(Pi*sqrt(j*n/(3*a))) / ((3*a)^(1/4) * n^(3/4)).

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^(4*k+1))^4, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3)) / (sqrt(2) * 3^(1/4) * n^(3/4)).

A284095 Expansion of Product_{k>=0} (1 + x^(8*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 0, 1, 4, 5, 2, 0, 0, 0, 0, 1, 5, 7, 3, 0, 0, 0, 0, 1, 5, 8, 5, 1, 0, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 mod 8.

Crossrefs

Cf. Product_{k>=0} (1 + x^(m*k+1)): A261612 (m=3), A169975 (m=4), A280454 (m=5), A280456 (m=6), A280457 (m=7), this sequence (m=8).

Programs

  • Mathematica
    CoefficientList[Series[Product[(1 + x^(8*k + 1)) , {k, 0, 91}], {x, 0, 91}], x] (* Indranil Ghosh, Mar 20 2017 *)
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 8] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Mar 20 2017 *)
  • PARI
    Vec(prod(k=0, 91, (1 + x^(8*k + 1))) + O(x^92)) \\ Indranil Ghosh, Mar 20 2017

Formula

a(n) ~ exp(sqrt(n/6)*Pi/2) / (2^(15/8) * 3^(1/4) * n^(3/4)) * (1 + (11*Pi/(384*sqrt(6)) - 3*sqrt(3/2)/(2*Pi))/sqrt(n)). - Vaclav Kotesovec, Mar 20 2017
G.f.: Sum_{k>=0} x^(k*(4*k - 3)) / Product_{j=1..k} (1 - x^(8*j)). - Ilya Gutkovskiy, Nov 24 2020

A170960 Expansion of Product_{i=1..m} (1 + x^(4*i-1)) for m = 7.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 2, 3, 0, 0, 3, 3, 0, 1, 4, 2, 0, 1, 4, 2, 0, 2, 5, 1, 0, 3, 4, 1, 0, 4, 4, 0, 1, 4, 3, 0, 1, 5, 2, 0, 2, 4, 1, 0, 2, 4, 1, 0, 3, 3, 0, 0, 3, 2, 0, 1, 3, 1, 0, 1, 2, 1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Product_{i=1..m} (1 + x^(4*i-1)) is the Poincaré polynomial for both Sp(2m) and O(2m+1).

References

  • H. Weyl, The Classical Groups, Princeton, 1946, see p. 238.

Crossrefs

Formula

a(n) = a(105-n). - Rick L. Shepherd, Mar 01 2013
Previous Showing 11-20 of 35 results. Next