cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A167880 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

Original entry on oeis.org

1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064360050, 33911153642450, 1661646528480050, 81420679895522450, 3989613314880600050, 195491052429149402450, 9579061569028320720050, 469374016882387715282450
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[14]]+t^15+1,den=Total[-48 t^Range[14]]+ 1176t^15+1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Aug 22 2011 *)

Formula

G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^15 - 48*t^14 - 48*t^13 - 48*t^12 - 48*t^11 - 48*t^10 - 48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).

A168727 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

Original entry on oeis.org

1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064360050, 33911153642450, 1661646528480050, 81420679895522450, 3989613314880600050, 195491052429149402450, 9579061569028320720050, 469374016882387715282450
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 55221383712196032315264958825, A170769(17) = 55221383712196032315264960050. - Klaus Brockhaus, Mar 27 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170769 (G.f.: (1+x)/(1-49*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^17 - 48*t^16 - 48*t^15 - 48*t^14 - 48*t^13 - 48*t^12 - 48*t^11 - 48*t^10 - 48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 06 2016 *)

Formula

G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^17 - 48*t^16 - 48*t^15 - 48*t^14 - 48*t^13 - 48*t^12 - 48*t^11 - 48*t^10 - 48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).

A168775 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

Original entry on oeis.org

1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064360050, 33911153642450, 1661646528480050, 81420679895522450, 3989613314880600050, 195491052429149402450, 9579061569028320720050, 469374016882387715282450
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
First disagreement at index 18: a(18) = 2705847801897605583447983041225, A170769(18) = 2705847801897605583447983042450.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170769 (G.f.: (1+x)/(1-49*x)).

Programs

  • Mathematica
    coxG[{18,1176,-48}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 25 2015 *)
    CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^18 - 48*t^17 - 48*t^16 - 48*t^15 - 48*t^14 - 48*t^13 - 48*t^12 - 48*t^11 - 48*t^10 - 48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 12 2016 *)

Formula

G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^18 - 48*t^17 - 48*t^16 - 48*t^15 - 48*t^14 - 48*t^13 - 48*t^12 - 48*t^11 - 48*t^10 - 48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).

A168823 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.

Original entry on oeis.org

1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064360050, 33911153642450, 1661646528480050, 81420679895522450, 3989613314880600050, 195491052429149402450, 9579061569028320720050, 469374016882387715282450
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 132586542292982673588951169078825, A170769(19) = 132586542292982673588951169080050. - Klaus Brockhaus, Apr 01 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170769 (G.f.: (1+x)/(1-49*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^19 - 48*t^18 - 48*t^17 - 48*t^16 - 48*t^15 - 48*t^14 - 48*t^13 - 48*t^12 - 48*t^11 - 48*t^10 - 48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1), {t,0,50}], t] (* G. C. Greubel, Nov 21 2016 *)
    coxG[{19,1176,-48}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 22 2019 *)

Formula

G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^19 - 48*t^18 - 48*t^17 - 48*t^16 - 48*t^15 - 48*t^14 - 48*t^13 - 48*t^12 - 48*t^11 - 48*t^10 - 48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).

A170731 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064360050, 33911153642450, 1661646528480050, 81420679895522450, 3989613314880600050, 195491052429149402450, 9579061569028320720050, 469374016882387715282450
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 1225. - Vincenzo Librandi, Dec 08 2012

Programs

  • Mathematica
    With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-48 t^Range[49]] + 1176t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Vincenzo Libramdi, Dec 08 2012 *)
    coxG[{50,1176,-48}] (* The coxG program is at A169452 *)  (* Harvey P. Dale, Apr 12 2022 *)

Formula

G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(1176*t^50 - 48*t^49 - 48*t^48 - 48*t^47 - 48*t^46 - 48*t^45 -
48*t^44 - 48*t^43 - 48*t^42 - 48*t^41 - 48*t^40 - 48*t^39 - 48*t^38 -
48*t^37 - 48*t^36 - 48*t^35 - 48*t^34 - 48*t^33 - 48*t^32 - 48*t^31 -
48*t^30 - 48*t^29 - 48*t^28 - 48*t^27 - 48*t^26 - 48*t^25 - 48*t^24 -
48*t^23 - 48*t^22 - 48*t^21 - 48*t^20 - 48*t^19 - 48*t^18 - 48*t^17 -
48*t^16 - 48*t^15 - 48*t^14 - 48*t^13 - 48*t^12 - 48*t^11 - 48*t^10 -
48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 -
48*t + 1)

A162919 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 50, 2450, 118825, 5762400, 279417600, 13548901800, 656982748800, 31856924131200, 1544734021723200, 74903753688422400, 3632063667308697600, 176117828998315276800, 8539908033612366028800, 414097934532557674291200
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(1176*t^3 - 48*t^2 - 48*t + 1)

A163290 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 50, 2450, 120050, 5881225, 288120000, 14114940000, 691488000000, 33875854559400, 1659571130851200, 81302047554268800, 3982970548016611200, 195124905996721243200, 9559128916780140902400, 468299754871670360217600
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^4 - 48*t^3 - 48*t^2 - 48*t + 1), {t,0,50}], t] (* or *) Join[{1}, LinearRecurrence[ {48,48,48,-1176}, {50, 2450, 120050, 5881225}, 25]] (* G. C. Greubel, Dec 17 2016 *)
    coxG[{4,1176,-48}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 22 2020 *)
  • PARI
    Vec((t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^4 - 48*t^3 - 48*t^2 - 48*t + 1) + O(t^50)) \\ G. C. Greubel, Dec 17 2016

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).

A164695 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064358825, 33911153522400, 1661646519657600, 81420679319162400, 3989613279580017600, 195491050353532802400, 9579061450374592377600, 469374010237877795941800
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).

A165182 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064360050, 33911153641225, 1661646528360000, 81420679886700000, 3989613314304240000, 195491052393848820000, 9579061566952704120000, 469374016763733986940000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^8 -
48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1)

A165726 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064360050, 33911153642450, 1661646528478825, 81420679895402400, 3989613314871777600, 195491052428573042400, 9579061568993020137600, 469374016880312098682400
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(1176*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 -
48*t^2 - 48*t + 1)
Previous Showing 11-20 of 50 results. Next