A308377 "Autotomy numbers" that have exactly 10 distinct decimal digits. Subtracting their last digit from the remaining part produces a shorter autotomy number (still with no duplicate digit). This process is iterated until the remaining part has only one digit (details in the Example section).
2487159630, 2581740963, 3697512840, 3751908642, 3791508642, 3796512840, 4283716590, 4573921680, 4609785321, 4832716590, 4960785321, 4976853210, 5016793284, 5071693284, 5106793284, 5170693284, 5179386420, 5187429630, 5389710642, 5397186420, 5473921680, 5710693284, 5731908642, 5786413290, 5791308642, 5809764321, 5839710642, 5847102963, 5897130642, 5897643210, 5907864321
Offset: 1
Examples
a(2) = 2581740963 Subtract 3 (last digit) from the remaining part 258174096 = 258174093 Subtract 3 (last digit) from the remaining part 25817409 = 25817406 Subtract 6 (last digit) from the remaining part 2581740 = 2581734 Subtract 4 (last digit) from the remaining part 258173 = 258169 Subtract 9 (last digit) from the remaining part 25816 = 25807 Subtract 7 (last digit) from the remaining part 2580 = 2573 Subtract 3 (last digit) from the remaining part 257 = 254 Subtract 4 (last digit) from the remaining part 25 = 21 Subtract 1 (last digit) from the remaining part 2 = 1 (single digit, end).
Links
- Jean-Marc Falcoz, Table of n, a(n) for n = 1..182
- Eric Angelini, Pandigitaux et saucissons (in French).
Comments