A221366
The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = (1/2)*(7 - 3*sqrt(5)).
Original entry on oeis.org
1, 5, 1, 45, 1, 320, 1, 2205, 1, 15125, 1, 103680, 1, 710645, 1, 4870845, 1, 33385280, 1, 228826125, 1, 1568397605, 1, 10749957120, 1, 73681302245, 1, 505019158605, 1, 3461452808000, 1, 23725150497405, 1
Offset: 0
F(1/2*(7 - sqrt(45))) = 1.16725 98258 10214 95210 ... = 1 + 1/(5 + 1/(1 + 1/(45 + 1/(1 + 1/(320 + 1/(1 + 1/(2205 + ...))))))).
F((1/2*(7 - sqrt(45)))^2) = 1.02173 93445 69104 86504 ... = 1 + 1/(45 + 1/(1 + 1/(2205 + 1/(1 + 1/(103680 + 1/(1 + 1/(4870845 + ...))))))).
F((1/2*(7 - sqrt(45)))^3) = 1.00311 52648 91110 10148 ... = 1 + 1/(320 + 1/(1 + 1/(103680 + 1/(1 + 1/(33385280 + 1/(1 + 1/(10749957120 + ...))))))).
-
LinearRecurrence[{0,8,0,-8,0,1},{1,5,1,45,1,320},40] (* or *) Riffle[ LinearRecurrence[{8,-8,1},{5,45,320},20],1,{1,-1,2}] (* Harvey P. Dale, Jan 04 2018 *)
A174505
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*Lucas(n)) ), where Lucas(n) = A000032(n) = ((1+sqrt(5))/2)^n + ((1-sqrt(5))/2)^n.
Original entry on oeis.org
3, 1, 3, 6, 1, 10, 17, 1, 28, 46, 1, 75, 122, 1, 198, 321, 1, 520, 842, 1, 1363, 2206, 1, 3570, 5777, 1, 9348, 15126, 1, 24475, 39602, 1, 64078, 103681, 1, 167760, 271442, 1, 439203, 710646, 1, 1149850, 1860497, 1, 3010348, 4870846, 1, 7881195, 12752042, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A000032(n)) or, more explicitly,
L = 1 + 1/(2*3) + 1/(3*4) + 1/(4*7) + 1/(5*11) + 1/(6*18) +...
so that L = 1.3240810281350207977825663314844927483236088628781...
then exp(L) = 3.7587296006215531704236522952745520722012715044952...
equals the continued fraction given by this sequence:
exp(L) = [3;1,3,6,1,10,17,1,28,46,1,75,122,1,198,321,1,...]; i.e.,
exp(L) = 3 + 1/(1 + 1/(3 + 1/(6 + 1/(1 + 1/(10 + 1/(17 +...)))))).
Compare these partial quotients to A000032(n), n=1,2,3,...:
[1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,3571,5778,...].
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1.
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 2.
- Index entries for linear recurrences with constant coefficients, signature (0,0,4,0,0,-4,0,0,1).
-
LinearRecurrence[{0,0,4,0,0,-4,0,0,1},{3,1,3,6,1,10,17,1,28,46},50] (* Harvey P. Dale, Feb 02 2025 *)
-
{a(n)=local(L=sum(m=1,2*n+1000,1./(m*round(((1+sqrt(5))/2)^m+((1-sqrt(5))/2)^m))));contfrac(exp(L))[n]}
A174506
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A014448(n)) ), where A014448(n) = (2+sqrt(5))^n + (2-sqrt(5))^n.
Original entry on oeis.org
1, 3, 17, 1, 75, 321, 1, 1363, 5777, 1, 24475, 103681, 1, 439203, 1860497, 1, 7881195, 33385281, 1, 141422323, 599074577, 1, 2537720635, 10749957121, 1, 45537549123, 192900153617, 1, 817138163595, 3461452808001, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A014448(n)) or, more explicitly,
L = 1/4 + 1/(2*18) + 1/(3*76) + 1/(4*322) + 1/(5*1364) +...
so that L = 0.2831229765066671850017990708479258794794782639219...
then exp(L) = 1.3272683746094012523448609429829013914921330866098...
equals the continued fraction given by this sequence:
exp(L) = [1;3,17,1,75,321,1,1363,5777,1,24475,103681,1,...]; i.e.,
exp(L) = 1 + 1/(3 + 1/(17 + 1/(1 + 1/(75 + 1/(321 + 1/(1 +...)))))).
Compare these partial quotients to A014448(n), n=1,2,3,...:
[4,18,76,322,1364,5778,24476,103682,439204,1860498,7881196,33385282,...].
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1.
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 2.
- Index entries for linear recurrences with constant coefficients, signature (0,0,19,0,0,-19,0,0,1).
A174507
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A085447(n)) ), where A085447(n) = (3+sqrt(10))^n + (3-sqrt(10))^n.
Original entry on oeis.org
1, 5, 37, 1, 233, 1441, 1, 8885, 54757, 1, 337433, 2079361, 1, 12813605, 78960997, 1, 486579593, 2998438561, 1, 18477210965, 113861704357, 1, 701647437113, 4323746327041, 1, 26644125399365, 164188498723237, 1, 1011775117738793
Offset: 0
Let L = Sum_{n>=1} 1/(n*A085447(n)) or, more explicitly,
L = 1/6 + 1/(2*38) + 1/(3*234) + 1/(4*1442) + 1/(5*8886) +...
so that L = 0.1814484777922995750614847484088330644558009487798...
then exp(L) = 1.1989527624251050123398509513177598419795554140316...
equals the continued fraction given by this sequence:
exp(L) = [1;5,37,1,233,1441,1,8885,54757,1,337433,...]; i.e.,
exp(L) = 1 + 1/(5 + 1/(37 + 1/(1 + 1/(233 + 1/(1441 + 1/(1 +...)))))).
Compare these partial quotients to A085447(n), n=1,2,3,...:
[6,38,234,1442,8886,54758,337434,2079362,12813606,78960998,...].
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1.
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 2.
- Index entries for linear recurrences with constant coefficients, signature (0,0,39,0,0,-39,0,0,1).
-
LinearRecurrence[{0,0,39,0,0,-39,0,0,1},{1,5,37,1,233,1441,1,8885,54757},30] (* Harvey P. Dale, Aug 07 2016 *)
-
{a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((3+sqrt(10))^m+(3-sqrt(10))^m))));contfrac(exp(L))[n]}
A221193
Simple continued fraction expansion of product {k >= 0} (1 - 2*(N - sqrt(N^2-1))^(4*k+3))/(1 - 2*(N - sqrt(N^2-1))^(4*k+1)) at N = 3.
Original entry on oeis.org
1, 1, 1, 32, 1, 97, 1, 1152, 1, 3361, 1, 39200, 1, 114241, 1, 1331712, 1, 3880897, 1, 45239072, 1, 131836321, 1, 1536796800, 1, 4478554081, 1, 52205852192, 1, 152139002497, 1, 1773462177792, 1, 5168247530881, 1, 60245508192800, 1, 175568277047521, 1
Offset: 0
Product {k >= 0} (1 - 2*(3 - 2*sqrt(2))^(4*k+3))/(1 - 2*(3 - 2*sqrt(2))^(4*k+1)) = 1.50746 49374 34879 05211 ... = 1 + 1/(1 + 1/(1 + 1/(32 + 1/(1 + 1/(97 + ...))))).
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,34,0,-34,0,-1,0,1).
A221194
Simple continued fraction expansion of product {k >= 0} (1 - 2*(N - sqrt(N^2-1))^(4*k+3))/(1 - 2*(N - sqrt(N^2-1))^(4*k+1)) at N = 4.
Original entry on oeis.org
1, 2, 1, 60, 1, 242, 1, 3840, 1, 15122, 1, 238140, 1, 937442, 1, 14760960, 1, 58106402, 1, 914941500, 1, 3601659602, 1, 56711612160, 1, 223244789042, 1, 3515205012540, 1, 13837575261122, 1, 217885999165440, 1, 857706421400642, 1, 13505416743244860, 1
Offset: 0
product {k >= 0} (1 - 2*(4 - sqrt(15))^(4*k+3))/(1 - 2*(4 - sqrt(15))^(4*k+1)) = 1.33513 52548 90793 94897 ... = 1 + 1/(2 + 1/(1 + 1/(60 + 1/(1 + 1/(242 + ...))))).
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,62,0,-62,0,-1,0,1).
-
LinearRecurrence[{0,1,0,62,0,-62,0,-1,0,1},{1,2,1,60,1,242,1,3840,1,15122},40] (* Harvey P. Dale, Aug 03 2023 *)
A221195
Simple continued fraction expansion of product {k >= 0} (1 - 2*(N - sqrt(N^2-1))^(4*k+3))/(1 - 2*(N - sqrt(N^2-1))^(4*k+1)) at N = 5.
Original entry on oeis.org
1, 3, 1, 96, 1, 483, 1, 9600, 1, 47523, 1, 940896, 1, 4656963, 1, 92198400, 1, 456335043, 1, 9034502496, 1, 44716177443, 1, 885289046400, 1, 4381729054563, 1, 86749292044896, 1, 429364731169923, 1, 8500545331353600, 1
Offset: 0
Product {k >= 0} (1 - 2*(5 - sqrt(24))^(4*k+3))/(1 - 2*(5 - sqrt(24))^(4*k+1)) = 1.25063 93996 76216 17350 ... = 1 + 1/(3 + 1/(1 + 1/(96 + 1/(1 + 1/(483 + ...))))).
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,98,0,-98,0,-1,0,1).
A221367
The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = (1/2)*(9 - sqrt(77)).
Original entry on oeis.org
1, 7, 1, 77, 1, 700, 1, 6237, 1, 55447, 1, 492800, 1, 4379767, 1, 38925117, 1, 345946300, 1, 3074591597, 1, 27325378087, 1, 242853811200, 1, 2158358922727, 1, 19182376493357, 1, 170483029517500, 1, 1515164889164157, 1, 13466000972959927, 1
Offset: 0
F(1/2*(9 - sqrt(77))) = 1.12519 81018 34502 81936 ... = 1 + 1/(7 + 1/(1 + 1/(77 + 1/(1 + 1/(700 + 1/(1 + 1/(6237 + ...))))))).
F((1/2*(9 - sqrt(77)))^2) = 1.01282 05391 65421 74656 ... = 1 + 1/(77 + 1/(1 + 1/(6237 + 1/(1 + 1/(492800 + 1/(1 + 1/(38925117 + ...))))))).
F((1/2*(9 - sqrt(77)))^3) = 1.00142 65335 27667 24640 ... = 1 + 1/(700 + 1/(1 + 1/(492800 + 1/(1 + 1/(345946300 + 1/(1 + 1/(242853811200 + ...))))))).
A174510
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A080040(n)) ), where A080040(n) = (1+sqrt(3))^n + (1-sqrt(3))^n.
Original entry on oeis.org
1, 1, 3, 1, 9, 13, 1, 37, 51, 1, 141, 193, 1, 529, 723, 1, 1977, 2701, 1, 7381, 10083, 1, 27549, 37633, 1, 102817, 140451, 1, 383721, 524173, 1, 1432069, 1956243, 1, 5344557, 7300801, 1, 19946161, 27246963, 1, 74440089, 101687053, 1, 277814197
Offset: 0
Let L = Sum_{n>=1} 1/(n*A080040(n)) or, more explicitly,
L = 1/2 + 1/(2*8) + 1/(3*20) + 1/(4*56) + 1/(5*152) + 1/(6*416) +...
so that L = 0.5855329921665857283309456463364081071245363598803...
then exp(L) = 1.7959479567807442397990076546690432122217738278933...
equals the continued fraction given by this sequence:
exp(L) = [1;1,3,1,9,13,1,37,51,1,141,193,1,529,723,1,...]; i.e.,
exp(L) = 1 + 1/(1 + 1/(3 + 1/(1 + 1/(9 + 1/(13 + 1/(1 +...)))))).
Compare these partial quotients to A080040(n)/2^[n/2], n=1,2,3,...:
[2,4,10,14,38,52,142,194,530,724,1978,2702,7382,10084,27550,...],
where A080040 begins:
[2,8,20,56,152,416,1136,3104,8480,23168,63296,172928,472448,...].
Comments