cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A175807 A007318-perfect numbers.

Original entry on oeis.org

2, 3, 4, 5, 12, 22, 26, 154
Offset: 1

Views

Author

Vladimir Shevelev, Dec 05 2010

Keywords

Comments

See definition in comment to A175522. The definition is applied to the flattened view of the binomial coefficients with a single index, without regard to fact that A007318 is a triangle.
No more terms up to 10^6. - Michel Marcus, Feb 07 2016

Examples

			Since A007318(1)+ A007318(2)+ A007318(3)+ A007318(4)+ A007318(6)=6= A007318(12), then 12 is in the sequence.
		

Crossrefs

Programs

  • Maple
    A007318 := proc(n) option remember; local t,r; t := 0 ; for r from 0 do if t+r+1 > n then return binomial(r,n-t) ; end if; t := t+r+1 ; end do: end proc:
    isA175807 := proc(n) m := 0 ; for d in numtheory[divisors](n) minus {n} do m := m+A007318(d) ; end do; m = A007318(n) ; end proc:
    for n from 1 do if isA175807(n) then printf("%d,\n",n); end if; end do: # R. J. Mathar, Dec 05 2010
  • PARI
    b(n) = {my(m = 1); while (m*(m+1)/2 < n, m++); if (! ispolygonal(n, 3), m--); binomial(m, n - m*(m+1)/2);}
    isok(n) = sumdiv(n, d, (dMichel Marcus, Feb 07 2016

A175811 A007318-deficient numbers.

Original entry on oeis.org

1, 7, 11, 13, 17, 18, 19, 23, 24, 25, 29, 30, 31, 32, 33, 37, 38, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 60, 61, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117
Offset: 1

Views

Author

Vladimir Shevelev, Dec 05 2010

Keywords

Comments

Definition see in comment to A175522. The same criticism on index-selection as in A175807 applies. All primes greater than 5 are in the sequence.

Crossrefs

Cf. A007318, A175522, A175807 (perfect version), A005100, A005101.

Programs

  • Maple
    A007318 := proc(n) option remember; local t, r; t := 0 ; for r from 0 do if t+r+1 > n then return binomial(r, n-t) ; end if; t := t+r+1 ; end do: end proc:
    isA175811 := proc(n) m := 0 ; for d in numtheory[divisors](n) minus {n} do m := m+A007318(d) ; end do; m < A007318(n) ; end proc:
    for n from 1 to 120 do if isA175811(n) then printf("%d,", n); end if; end do: # R. J. Mathar, Dec 06 2010
  • PARI
    b(n) = {my(m = 1); while (m*(m+1)/2 < n, m++); if (! ispolygonal(n, 3), m--); binomial(m, n - m*(m+1)/2);}
    isok(n) = sumdiv(n, d, (dMichel Marcus, Feb 07 2016

Formula

{n: sum_{d|n, dA007318(d) < A007318(n)}.

Extensions

Terms >25 from R. J. Mathar, Dec 06 2010

A175853 (2*n-1)-perfect numbers.

Original entry on oeis.org

20, 128768, 33501184
Offset: 1

Views

Author

Vladimir Shevelev, Dec 05 2010

Keywords

Comments

For the definition see A175837.
Considering only terms of the form 2^k * p with p prime results in a linear equation for p for a given k. Solving quickly generates other terms of the sequence: 137433972736, 2199001235456, 649037107316852462774394019643392, and a 157-digit term associated with k=260. - D. S. McNeil, Dec 08 2010

Examples

			Proper divisors of 20 are: 1,2,4,5,10. Since 2*20-1=(2*1-1)+(2*2-1)+(2*4-1)+(2*5-1)+(2*10-1)=39, then 20 is in the sequence.
		

Crossrefs

Cf. A175837 (abundant version), A175522, A033880, A000005.

Formula

A033880(a(n))=A000005(a(n))/2-1.

Extensions

a(3) from D. S. McNeil, Dec 08 2010

A177050 Ceiling(n/2)-perfect numbers.

Original entry on oeis.org

2, 4, 8, 10, 16, 32, 64, 110, 128, 136, 256, 512, 884, 1024, 2048, 4096, 8192, 16384, 18632, 32768, 32896, 65536, 70564, 100804, 116624, 131072, 262144, 391612, 449295, 524288, 1048576, 2097152, 4194304, 8388608, 15370304, 16777216, 33554432, 67108864, 73995392
Offset: 1

Views

Author

Vladimir Shevelev, Dec 09 2010

Keywords

Comments

All powers of 2 except for 1 are terms of the sequence. All numbers of the form 2^(2^k-1)*p, where p=2^(2^k)+1 is a Fermat prime (k >= 1) are in the sequence. Thus numbers 136, 32896, 2147516416 are in the sequence. It is interesting that in this construction Fermat primes play the same role that Mersenne primes in construction of usual even perfect numbers. Unfortunately, the conversion for even ceiling(n/2)-perfect numbers is false: the first counterexample, found by D. S. McNeil, is 110 = 2*5*11. Besides, the first odd term, found by D. S. McNeil, is 449295 = 3*5*7*11*389.

Crossrefs

Programs

  • PARI
    isok(n) = sumdiv(n, d, (dMichel Marcus, Feb 08 2016
  • Sage
    is_A177050 = lambda n: sum(ceil(d/2) for d in divisors(n)) == 2*ceil(n/2) # D. S. McNeil, Dec 10 2010
    

Extensions

a(31)-a(39) from Michel Marcus, Feb 08 2016

A324101 Numbers whose "unary-binary encoded prime factorization" (A156552) is not A000120-deficient.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2019

Keywords

Comments

Numbers n for which A192895(A156552(n)) >= 0.
Numbers n such that A156552(n) is either in A175522 or in A175526.

Crossrefs

Cf. A324102 (complement, apart from 1 which is in neither sequence).

A175821 A007318-abundant numbers.

Original entry on oeis.org

6, 8, 9, 10, 14, 15, 16, 20, 21, 27, 28, 34, 35, 36, 44, 45, 46, 54, 55, 56, 64, 65, 66, 76, 77, 78, 80, 90, 91, 92, 102, 104, 105, 118, 119, 120, 122, 135, 136, 138, 150, 152, 153, 168, 170, 171, 172, 188, 189, 190, 192, 207, 208, 209, 210, 228, 230, 231, 232, 250, 252, 253, 254, 255, 256, 275, 276, 278, 296, 297, 298, 299, 300, 320, 322, 324, 325, 326, 327, 328, 348, 350, 351, 352, 354, 375, 376, 377, 378, 380, 381, 400, 402, 404, 405, 406, 408
Offset: 1

Views

Author

Vladimir Shevelev, Dec 05 2010

Keywords

Comments

The comment in A175522 contains a definition.

Crossrefs

Cf. A175807 (perfect version), A175811 (deficient version), A007318, A005100, A005101.

Formula

A000027 \ { A175807 U A175811}. [R. J. Mathar, Dec 06 2010]

Extensions

Terms beyond 27 from R. J. Mathar, Dec 06 2010

A175837 (2n-1)-abundant numbers.

Original entry on oeis.org

12, 18, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252
Offset: 1

Views

Author

Vladimir Shevelev, Dec 05 2010

Keywords

Comments

A number k is (2n-1)-abundant if sum_{d|k, d 2*k-1, a specialization of the definition in A175522.
Adding 2k-1 on both sides of the condition yields the equivalent condition A129246(k) > 2*(2k-1).
Adding 2k-1 on both sides also yields sum_{d|k} (2*d-1) > 2*(2k-1), equivalent to 2*sum_{d|k}d - tau(k) > 2*(2k-1) or sigma(k) > 2k-1+tau(k)/2, equivalent to A033880(k) > tau(k)/2-1.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := DivisorSum[n, 2#-1&, # 2n-1; Select[Range[252], aQ] (* Amiram Eldar, Feb 18 2019 *)

Formula

A175837 = { n | A033880(n) > A000005(n)/2-1 }.

Extensions

More terms from Amiram Eldar, Feb 18 2019

A176234 Floor(sqrt(n))-perfect numbers.

Original entry on oeis.org

2, 3, 4, 21, 26, 27, 33, 35, 38, 46, 58, 62, 74, 475, 605, 1083, 1719, 2007, 2151, 2169, 2259, 2313, 2421, 2431, 2439, 2493, 2529, 2547, 2637, 2737, 2763, 2799, 2979, 3123, 3303, 3357, 3367, 3451, 3619, 3681, 3698, 4255, 4465, 4625, 5035, 5125, 5185, 5695, 6205
Offset: 1

Views

Author

Vladimir Shevelev, Dec 07 2010

Keywords

Comments

See definition in comment to A175522.
The even terms begin: 2, 4, 26, 38, 46, 58, 62, 74, 3698, 34226, 34726, ... - Michel Marcus, Feb 08 2016

Examples

			floor(sqrt(35))=5; floor(sqrt(1))+floor(sqrt(5))+floor(sqrt(7))=5. Therefore, 35 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[Floor[Sqrt[Divisors[n][[i]]]], {i, 1, Length[Divisors[n]] - 1}]; Select[Range[3000], f[#] == Floor[Sqrt[#]] &]
  • PARI
    isok(n) = sumdiv(n, d, (dMichel Marcus, Feb 08 2016

Extensions

More terms from Michel Marcus, Feb 08 2016

A177052 Ceiling(n/2)-abundant numbers.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228
Offset: 1

Views

Author

Vladimir Shevelev, Dec 09 2010

Keywords

Comments

For definition, see A175522.
All positive numbers == 0 (mod 6) are in the sequence (basically A008588). In addition, note that all odd primes are ceiling(n/2)-deficient numbers. The first odd term of the sequence is 315.

Crossrefs

Programs

  • PARI
    isok(n) = sumdiv(n, d, (d ceil(n/2); \\ Michel Marcus, Feb 08 2016
  • Sage
    is_A177052 = lambda n: sum(ceil(d/2) for d in divisors(n)) > 2*ceil(n/2) # D. S. McNeil, Dec 10 2010
    

Formula

{n : Sum_{d|n, dA004526(1+d) > A004526(1+n)}. [R. J. Mathar, Dec 11 2010]

A177084 Ceiling(n/3)-perfect numbers.

Original entry on oeis.org

2, 3, 4, 10, 14, 50, 52, 130, 184, 315, 688, 988, 2528, 6490, 35456, 396916, 537088, 538112, 801376, 1297312, 8452096, 8456192, 35221184, 53996590, 134520832, 222469702
Offset: 1

Views

Author

Vladimir Shevelev, Dec 09 2010

Keywords

Comments

For definition, see comment of A175522.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := DivisorSum[n, Ceiling[#/3] &, # < n &] == Ceiling[n/3]; Select[Range[10^6], aQ] (* Amiram Eldar, Jul 20 2019 *)
  • Sage
    is_A177084 = lambda n: sum(ceil(d/3) for d in divisors(n)) == 2*ceil(n/3) # D. S. McNeil, Dec 10 2010

Formula

{n: Sum_{d|n, dA002264(2+d) = A002264(2+n)}. - R. J. Mathar, Dec 11 2010

Extensions

a(21)-a(26) from Amiram Eldar, Jul 20 2019
Previous Showing 11-20 of 26 results. Next