cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A340578 Decimal expansion of Product_{primes p == 5 (mod 6)} 1/(1+1/p^2).

Original entry on oeis.org

9, 4, 4, 5, 0, 0, 9, 3, 4, 5, 0, 4, 7, 0, 0, 9, 8, 6, 7, 3, 4, 2, 9, 1, 0, 9, 4, 1, 9, 1, 4, 4, 4, 3, 4, 2, 5, 4, 6, 1, 1, 0, 7, 8, 0, 8, 6, 9, 0, 6, 6, 7, 6, 9, 5, 5, 7, 3, 5, 7, 7, 1, 1, 1, 8, 3, 8, 2, 6, 4, 5, 1, 9, 9, 3, 3, 5, 7, 4, 6, 3, 9, 5, 6, 7, 7, 5, 3, 9, 6, 1, 7, 0, 5, 2, 9, 9, 4, 5, 3, 5, 8, 6, 7, 8
Offset: 0

Views

Author

Jean-François Alcover, Jan 12 2021

Keywords

Examples

			0.94450093450470098673429109419144434254611078086906676955735771...
		

Crossrefs

Programs

  • Mathematica
    digits = 105;
    precision = digits + 5;
    prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
    Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
    Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
    Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
    gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
    pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
    pD = (45*pB*Lv[2])/(4*Pi^2);
    RealDigits[pD, 10, digits][[1]] (* Most of this code is due to Artur Jasinski *)
    (* -------------------------------------------------------------------------- *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[6, 5, 4]/Z[6, 5, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

A340629 Decimal expansion of Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 0, 2, 1, 8, 7, 8, 0, 6, 0, 4, 1, 8, 7, 5, 6, 6, 7, 5, 7, 4, 4, 4, 4, 8, 9, 1, 4, 6, 0, 0, 2, 7, 0, 8, 2, 6, 1, 7, 0, 4, 6, 0, 7, 3, 7, 7, 3, 2, 5, 1, 6, 4, 0, 6, 6, 6, 0, 1, 1, 9, 4, 4, 3, 7, 7, 0, 9, 0, 4, 7, 6, 7, 0, 5, 6, 6, 0, 0, 8, 6, 0, 6, 4, 5, 5, 1, 4, 9, 9, 9, 5, 0, 0, 5, 9, 8, 4, 1, 4, 9, 9, 9, 0, 6, 2, 3, 7, 6, 0, 1, 0, 5, 2, 3, 3, 3, 2, 0, 3, 5
Offset: 1

Views

Author

Artur Jasinski, Jan 13 2021

Keywords

Examples

			1.0218780604187566757444489146002708261704607377325...
		

Crossrefs

Programs

  • Maple
    evalf(Re(15*sqrt((1/13)*(5*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))/Pi^2), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah.
  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5,1,4]/Z[5,1,2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *)
    digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]];
    cl[x_] := I (PolyLog[2, (-1)^x] - PolyLog[2, -(-1)^(1 - x)]);
    A340629 := (15 Sqrt[65]/(26 Pi^2)) Sqrt[cl[2/5]^2 + cl[4/5]^2];
    digitize[A340629] (* Peter Luschny, Jan 23 2021 *)

Formula

Equals 6*sqrt(5)/(13*A340628).
Equals A340004^2/A340808. - R. J. Mathar, Jan 15 2021
Equals 15*sqrt(65)*g/(13*Pi^2) where g = sqrt(Cl2(2*Pi/5)^2 + Cl2(4*Pi/5)^2) = 1.0841621352693895..., and Cl2 is the Clausen function of order 2. Formula by Pascal Sebah (personal communication). - Artur Jasinski, Jan 20 2021
Equals Sum_{q in A004615} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

Extensions

Corrected and more terms from Vaclav Kotesovec, Jan 15 2021

A340711 Decimal expansion of Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 2, 7, 3, 9, 8, 6, 6, 1, 3, 2, 0, 6, 8, 3, 3, 9, 2, 5, 1, 5, 8, 1, 6, 8, 3, 8, 2, 1, 3, 8, 9, 4, 7, 2, 7, 3, 4, 7, 6, 2, 7, 4, 4, 4, 6, 7, 6, 7, 3, 5, 7, 8, 9, 4, 0, 0, 2, 9, 6, 8, 1, 4, 4, 0, 9, 8, 7, 4, 8, 6, 6, 8, 1, 5, 3, 7, 7, 6, 0, 6, 9, 5, 5, 6, 2, 0, 1, 2, 2, 8, 5, 4, 3, 8, 1, 1, 4, 6, 6, 0, 7, 3, 0, 5, 9, 2, 7, 4, 0, 5, 9, 2, 2, 4, 4, 6, 8, 1, 3
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2021

Keywords

Examples

			1.273986613206833925158...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[1/(Z[5, 3, 4]/Z[5, 3, 2]^2)]

Formula

D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = A340710.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = this constant.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
Equals Sum_{q in A004617} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

A340665 Decimal expansion of Product_{primes p == 3 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 1, 3, 5, 7, 6, 4, 8, 7, 8, 6, 6, 8, 9, 2, 1, 6, 2, 6, 8, 6, 8, 6, 4, 3, 0, 0, 9, 4, 7, 2, 0, 8, 2, 2, 8, 9, 5, 1, 1, 9, 3, 6, 4, 1, 3, 0, 0, 5, 4, 6, 8, 7, 4, 4, 1, 6, 4, 9, 9, 7, 4, 3, 0, 1, 6, 3, 4, 0, 6, 4, 3, 1, 6, 7, 2, 0, 0, 2, 9, 6, 6, 0, 9, 9, 0, 0, 6, 8, 4, 6, 0, 3, 7, 1, 9, 8, 3, 9, 6, 8, 5, 1, 9
Offset: 1

Views

Author

Artur Jasinski, Jan 15 2021

Keywords

Examples

			1.135764878668921626868643009472082289511936413...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 100; digits = 50; (* Adjust as needed. *)
    digitize[c_] := RealDigits[Chop[N[c, digits+10]], 10, digits][[1]];
    digitize[Z[5, 3, 2]]

Formula

Equals Sum_{k>=1} 1/A004617(k)^2. - Amiram Eldar, Jan 24 2021

A340794 Decimal expansion of Product_{primes p == 2 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 3, 6, 8, 5, 7, 2, 0, 5, 3, 8, 7, 6, 6, 4, 9, 0, 8, 5, 8, 6, 0, 7, 6, 3, 8, 9, 0, 4, 8, 3, 1, 0, 9, 9, 9, 0, 1, 7, 0, 2, 0, 7, 8, 2, 8, 8, 8, 5, 8, 9, 5, 2, 0, 5, 0, 0, 8, 5, 0, 4, 0, 2, 9, 5, 5, 6, 3, 3, 1, 1, 8, 8, 8, 1, 0, 5, 4, 2, 1, 2, 0, 9, 2, 1, 5, 6, 7, 7, 4, 9, 6, 0, 8, 0, 9, 7, 3, 8, 1, 1, 9, 4, 4, 2, 9, 3, 2, 4, 3, 5, 1, 5, 4, 0, 9, 3, 2, 2, 6
Offset: 1

Views

Author

Artur Jasinski, Jan 21 2021

Keywords

Examples

			1.36857205387664908586076389048310999017020782888589520500850402955633118881...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[Z[5, 2, 2]]

Formula

I = Product_{primes p == 0 (mod 5)} p^2/(p^2-1) = 25/24.
J = Product_{primes p == 1 (mod 5)} p^2/(p^2-1) = A340004.
K = Product_{primes p == 2 (mod 5)} p^2/(p^2-1) = this constant.
L = Product_{primes p == 3 (mod 5)} p^2/(p^2-1) = A340665.
M = Product_{primes p == 4 (mod 5)} p^2/(p^2-1) = A340127.
I*J*K*L*M = Pi^2/6 = zeta(2).
J*K*L*M = 4*Pi^2/25.
M = (Pi/2)*C(5,4)^(-2)*exp(-gamma/2)*sqrt(3/log(2+sqrt(5))), where gamma is the Euler-Mascheroni constant A001620 and C(5,4) is the Mertens constant = 1.29936454791497798816084...
Equals Sum_{k>=1} 1/A004616(k)^2. - Amiram Eldar, Jan 24 2021

A334479 Decimal expansion of Product_{k>=1} (1 + 1/A007528(k)^3).

Original entry on oeis.org

1, 0, 0, 9, 1, 3, 4, 5, 0, 8, 6, 3, 8, 4, 7, 4, 4, 7, 8, 0, 7, 1, 1, 3, 7, 5, 3, 9, 5, 8, 9, 2, 0, 5, 5, 8, 8, 1, 7, 4, 5, 6, 4, 7, 8, 5, 2, 9, 5, 2, 5, 5, 9, 9, 3, 0, 7, 2, 3, 6, 2, 0, 8, 1, 4, 8, 7, 9, 6, 2, 8, 3, 5, 9, 1, 6, 3, 6, 0, 3, 2, 1, 1, 9, 3, 2, 6, 6, 4, 3, 5, 2, 6, 4, 0, 4, 9, 6, 5, 9, 7, 5, 6, 1, 6
Offset: 1

Views

Author

Vaclav Kotesovec, May 02 2020

Keywords

Comments

In general, for s > 0, Product_{k>=1} (1 + 1/A007528(k)^(2*s+1)) / (1 - 1/A007528(k)^(2*s+1)) = (1 - 1/2^(2*s + 1)) * (3^(2*s + 1) - 1) * (2*s)! * zeta(2*s + 1) / (sqrt(3) * A002114(s) * Pi^(2*s + 1)).
For s > 1, Product_{k>=1} (1 + 1/A007528(k)^s) / (1 - 1/A007528(k)^s) = (2^s - 1) * (3^s - 1) * zeta(s) / (zeta(s, 1/6) - zeta(s, 5/6)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) * (1 + 1/A007528(k)^s) = 6^s * zeta(s) / ((2^s + 1) * (3^s + 1) * zeta(2*s)).

Examples

			1.0091345086384744780711375395892055881745647852...
		

Crossrefs

Formula

A334479 / A334480 = 91*sqrt(3)*zeta(3)/(6*Pi^3).
A334477 * A334479 = 810*zeta(3)/Pi^6.

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A332513 Numbers k such that phi(k) == 4 (mod 12), where phi is the Euler totient function (A000010).

Original entry on oeis.org

5, 8, 10, 12, 17, 29, 32, 34, 40, 41, 48, 53, 55, 58, 60, 75, 82, 85, 88, 89, 100, 101, 106, 110, 113, 115, 125, 128, 132, 136, 137, 145, 149, 150, 160, 170, 173, 178, 184, 187, 192, 197, 202, 204, 205, 226, 230, 232, 233, 235, 240, 250, 253, 257, 265, 269, 274
Offset: 1

Views

Author

Amiram Eldar, Feb 14 2020

Keywords

Comments

Dence and Pomerance showed that the asymptotic number of the terms below x is ~ c1 * x/sqrt(log(x)), where c1 = (sqrt(2*sqrt(3))/(3*Pi)) * c3^(-1/2) * (2*c3 + c4) = 0.6109136202..., c3 = Product_{primes p == 2 (mod 3)} (1 + 1/(p^2-1)), and c4 = Product_{primes p == 2 (mod 3)} (1 - 1/(p+1)^2).

Examples

			17 is a term since phi(17) = 16 == 4 (mod 12).
		

Crossrefs

Programs

  • Magma
    [k:k in [1..300]| EulerPhi(k) mod 12 eq 4]; // Marius A. Burtea, Feb 14 2020
  • Mathematica
    Select[Range[300], Mod[EulerPhi[#], 12] == 4 &]

A332515 Numbers k such that phi(k) == 8 (mod 12), where phi is the Euler totient function (A000010).

Original entry on oeis.org

15, 16, 20, 24, 25, 30, 33, 44, 50, 51, 64, 66, 68, 69, 80, 87, 92, 96, 102, 116, 120, 123, 138, 141, 159, 164, 165, 174, 176, 177, 188, 200, 212, 213, 220, 236, 246, 249, 255, 256, 264, 267, 272, 275, 282, 284, 289, 300, 303, 318, 320, 321, 330, 332, 339, 340
Offset: 1

Views

Author

Amiram Eldar, Feb 14 2020

Keywords

Comments

Dence and Pomerance showed that the asymptotic number of the terms below x is ~ c2 * x/sqrt(log(x)), where c2 = (sqrt(2*sqrt(3))/(3*Pi)) * c3^(-1/2) * (2*c3 - c4) = 0.3284176245..., c3 = Product_{primes p == 2 (mod 3)} (1 + 1/(p^2-1)), and c4 = Product_{primes p == 2 (mod 3)} (1 - 1/(p+1)^2).

Examples

			25 is a term since phi(25) = 20 == 8 (mod 12).
		

Crossrefs

Programs

  • Magma
    [k:k in [1..350]| EulerPhi(k) mod 12 eq 8]; // Marius A. Burtea, Feb 14 2020
  • Mathematica
    Select[Range[400], Mod[EulerPhi[#], 12] == 8 &]

A334477 Decimal expansion of Product_{k>=1} (1 + 1/A002476(k)^3).

Original entry on oeis.org

1, 0, 0, 3, 6, 0, 2, 5, 4, 0, 2, 2, 1, 2, 5, 9, 8, 9, 6, 7, 0, 4, 3, 2, 3, 9, 3, 3, 3, 3, 2, 1, 8, 7, 8, 5, 9, 1, 7, 0, 5, 3, 9, 4, 7, 7, 1, 1, 7, 5, 0, 8, 7, 2, 1, 3, 7, 0, 2, 2, 4, 0, 2, 6, 4, 1, 6, 5, 2, 3, 7, 1, 7, 3, 7, 1, 7, 3, 6, 2, 6, 1, 4, 6, 6, 2, 7, 5, 2, 0, 4, 0, 8, 1, 5, 1, 4, 8, 2, 9, 8, 9, 1, 5, 7
Offset: 1

Views

Author

Vaclav Kotesovec, May 02 2020

Keywords

Comments

In general, for s > 0, Product_{k>=1} (1 + 1/A002476(k)^(2*s+1)) / (1 - 1/A002476(k)^(2*s+1)) = sqrt(3) * (2*Pi)^(2*s + 1) * zeta(2*s + 1) * A002114(s) / ((2^(2*s + 1) + 1) * (3^(2*s + 1) + 1) * (2*s)! * zeta(4*s + 2)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) / (1 - 1/A002476(k)^s) = (zeta(s, 1/6) - zeta(s, 5/6))*zeta(s) / ((2^s + 1)*(3^s + 1)*zeta(2*s)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) * (1 + 1/A007528(k)^s) = 6^s * zeta(s) / ((2^s + 1) * (3^s + 1) * zeta(2*s)).
For s > 0, Product_{k>=1} ((A007528(k)^(2*s+1) - 1) / (A007528(k)^(2*s+1) + 1)) * ((A002476(k)^(2*s+1) + 1) / (A002476(k)^(2*s+1) - 1)) = 6 * A002114(s)^2 * (4*s + 2)! / ((2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2) = Bernoulli(2*s)^2 * (4*s + 2)! * (zeta(2*s + 1, 1/6) - zeta(2*s + 1, 5/6))^2 / (8*Pi^2 * (2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2 * zeta(2*s)^2).

Examples

			1.0036025402212598967043239333321878591705394771...
		

Crossrefs

Formula

A334477 / A334478 = 15*sqrt(3)*zeta(3)/Pi^3.
A334477 * A334479 = 810*zeta(3)/Pi^6.

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A334478 Decimal expansion of Product_{k>=1} (1 - 1/A002476(k)^3).

Original entry on oeis.org

9, 9, 6, 4, 0, 1, 6, 9, 2, 8, 1, 6, 0, 3, 6, 6, 3, 2, 2, 6, 2, 3, 6, 1, 1, 2, 2, 3, 8, 4, 7, 1, 8, 7, 9, 9, 9, 6, 5, 5, 7, 3, 8, 1, 8, 7, 1, 4, 0, 5, 3, 1, 5, 3, 7, 8, 6, 9, 8, 8, 9, 7, 4, 9, 3, 0, 1, 5, 9, 1, 3, 3, 2, 5, 3, 4, 3, 0, 6, 8, 4, 2, 5, 6, 2, 1, 9, 1, 9, 7, 2, 9, 9, 7, 7, 5, 2, 3, 2, 2, 1, 2, 3, 0, 1, 9
Offset: 0

Views

Author

Vaclav Kotesovec, May 02 2020

Keywords

Comments

In general, for s > 0, Product_{k>=1} (1 + 1/A002476(k)^(2*s+1)) / (1 - 1/A002476(k)^(2*s+1)) = sqrt(3) * (2*Pi)^(2*s + 1) * zeta(2*s + 1) * A002114(s) / ((2^(2*s + 1) + 1) * (3^(2*s + 1) + 1) * (2*s)! * zeta(4*s + 2)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) / (1 - 1/A002476(k)^s) = (zeta(s, 1/6) - zeta(s, 5/6))*zeta(s) / ((2^s + 1)*(3^s + 1)*zeta(2*s)).
For s > 1, Product_{k>=1} (1 - 1/A002476(k)^s) * (1 - 1/A007528(k)^s) = 6^s / ((2^s - 1)*(3^s - 1)*zeta(s)).

Examples

			0.996401692816036632262361122384718799965573818714...
		

Crossrefs

Formula

A334477 / A334478 = 15*sqrt(3)*zeta(3)/Pi^3.
A334478 * A334480 = 108/(91*zeta(3)).

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020
Previous Showing 11-20 of 30 results. Next