cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A347840 A surjective map of the positive numbers congruent to 5 modulo 8 (A004770) to the positive numbers congruent to 1, 3, or 7 modulo 8 (A047529).

Original entry on oeis.org

1, 3, 1, 7, 9, 11, 3, 15, 17, 19, 1, 23, 25, 27, 7, 31, 33, 35, 9, 39, 41, 43, 11, 47, 49, 51, 3, 55, 57, 59, 15, 63, 65, 67, 17, 71, 73, 75, 19, 79, 81, 83, 1, 87, 89, 91, 23, 95, 97, 99, 25, 103, 105, 107, 27, 111, 113, 115, 7, 119, 121
Offset: 1

Views

Author

Wolfdieter Lang, Oct 30 2021

Keywords

Comments

This map is obtained from the array A(k, m) given in A347834. There all positive numbers congruent to 5 modulo 8 (A004770) appear uniquely in the columns for m >= 1, and the m = 0 column gives all numbers congruent to {1, 3, 7} (mod 8) (A047529). The surjective map is f: A004770 -> A047529, with b(n) = A004770(n) -> f(b(n)) = a(n).
See also the array A178415 which has permuted rows.
This maps all entries of each row k of the array A(k, m), given in A347834, with columns m >= 1 to the entry A(k, 0) = A047529(k), for k >= 1. The numbers b(n) appear once in the array A for columns m >= 1. Column A(k, 1) = A347836(k) gives the numbers congruent to {5, 32, 29} (mod 32), and each entry for columns m >= 2 is congruent to 21 (mod 32).
The surjective map of the numbers b(n) = 5 + 8*(n-1) = A004770(n), for n >= 1, to A047529 with element a(n), is computed by switching to the companion array A347839 of A347834, with the simple recurrence, removing all factors of 4, and then going back to array A347834. See the formula below. Thanks to Antti Karttunen for motivating me to simplify the prescription, and to add in A347834 the hint for the induction proof that all 5 (mod 8) numbers appear once in the columns n >= 1.
This map f is of interest in the context of the Collatz 3*n+1 conjecture. The (modified) rooted tree with only odd labeled nodes has for each row k of the array A(k, m) (A347834) the same precursor (or (modified) Collatz map given in A075677(n+1), for 2*n+1). Therefore, all nodes with labels b(n) == 5 (mod 8) can be represented by a(n). This leads to a further restricted Collatz tree with only node labels congruent to {1, 3, 7} (mod 8) (A047529).
An even further restricted Collatz tree has only node labels congruent to 1 (mod 8) (A017077), as any positive integer can be written as m*2^(v+1)+2^v-1 or (m,v) where v is the number of trailing 1-bits in binary, and for v > 1 the next odd Collatz successor of (m,v) is (3*m+1,v-1). - Ruud H.G. van Tol, Sep 13 2023

Examples

			The sequence a(n) begins: (b(n) = A004770(n))
-------------------------------------------------------------------------
n:     1  2  3  4  5  6  7  8  9 10 11 12  13  14  15  16  17  18  19  20
b(n):  5 13 21 29 37 45 53 61 69 77 85 93 101 109 117 125 133 141 149 157
a(n):  1  3  1  7  9 11  3 15 17 19  1 23  25  27   7  31  35  35   9  39
-------------------------------------------------------------------------
n:     21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37 ...
b(n): 165 173 181 189 197 205 213 221 229 237 245 253 261 269 277 285 293 ...
a(n):  41  43  11  47  49  51   3  55  57  59  15  63  65  67  17  71  73 ...
-----------------------------------------------------------------------------
n = 6, b(6) = 45 = 13 + 32*1, case a), a(6) = 3 + 8*1 = 11.
n = 7, b(7) = 53 = 21 + 32*1, case b)1), first instance, L(7) = 0, a(7) = 3 + 8*0 = 3.
n = 31, b(31) = 245 = 117 + 128*1, case b)1), second instance, L(31) = 1, a(31) = 7 + 8*1 = 15.
n = 11, b(11) = 85 = 21 + 64*1, A065883(1 + 3*1) = 1, c(11) = 1, case b)2)i), a(11) = 85 = A347834(1, 3).
n = 19, b(19) = 149 = 21 + 64*2, A065883(1 + 3*2) = 7, c(19) = (7 - 1)/3 = 2, case b)2)ii), a(n) = 4*2 + 1 = 9.
		

Crossrefs

Programs

  • Mathematica
    A347840[n_] := NestWhile[Quotient[#, 4] &, 2*n - 1, Mod[#, 8] == 5 &];
    Array[A347840, 100] (* Paolo Xausa, Jun 25 2025 *)
  • PARI
    a(n) = n=2*n-1; while(5==n%8, n>>=2); n; \\ Ruud H.G. van Tol, Sep 13 2023
    
  • PARI
    a(n) = (2*n-1)>>(valuation(3*n-1,2)\2*2); \\ Ruud H.G. van Tol, Sep 20 2023

Formula

a(n) = (2*A065883((3*b(n)+1)/2) - 1)/3, with b(n) = A004770(n), for n >= 1.
a(n) = A385109(8*(n-1)+5). - Ralf Stephan, Jun 18 2025

A072201 a(n) = 4*a(n-1) + 1, a(1) = 15.

Original entry on oeis.org

15, 61, 245, 981, 3925, 15701, 62805, 251221, 1004885, 4019541, 16078165, 64312661, 257250645, 1029002581, 4116010325, 16464041301, 65856165205, 263424660821, 1053698643285, 4214794573141, 16859178292565
Offset: 1

Views

Author

N. Rathankar (rathankar(AT)yahoo.com), Jul 03 2002

Keywords

Comments

These are the integers N which on application of the Collatz function yield the number 23. The Collatz function: if N is an odd number then (3N+1)/2^r yields a positive odd integer for some value of r (which in this case is 11).
Numbers whose binary representation is 1111 together with n - 1 times 01. For example, a(4) = 981 = 1111010101 (2). - Omar E. Pol, Nov 24 2012

Crossrefs

Programs

Formula

a(n) = (23*4^n - 2)/6.
From Colin Barker, Aug 17 2012: (Start)
a(n) = 5*a(n-1) - 4*a(n-2).
G.f.: x*(15-14*x)/((1-x)*(1-4*x)). (End)
a(n) = 46*A002450(n-1) + 15. - Yosu Yurramendi, Jan 24 2017
a(n) = A178415(8, n) = A347834(6, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021

Extensions

Edited and extended by Henry Bottomley, Aug 05 2002

A347837 a(n) = 32*(n + floor(n/3)) - 11; third column of A347834.

Original entry on oeis.org

21, 53, 117, 149, 181, 245, 277, 309, 373, 405, 437, 501, 533, 565, 629, 661, 693, 757, 789, 821, 885, 917, 949, 1013, 1045, 1077, 1141, 1173, 1205, 1269, 1301, 1333, 1397, 1429, 1461, 1525, 1557, 1589, 1653, 1685
Offset: 1

Views

Author

Wolfdieter Lang, Oct 07 2021

Keywords

Crossrefs

Cf. A047529 (first column), A178415, A265667, A319451, A347834, A347836 (second column).

Programs

  • Magma
    [32*(n + Floor(n/3)) - 11 : n in [1..60]]; // Wesley Ivan Hurt, Oct 10 2021
  • Maple
    seq(32*(n + floor(n/3)) - 11, n=1..40); # Peter Luschny, Oct 10 2021
  • Mathematica
    A347837[n_] := 32*(n + Floor[n/3]) - 11; Array[A347837, 50] (* or *)
    LinearRecurrence[{1, 0, 1, -1}, {21, 53, 117, 149}, 50] (* Paolo Xausa, Feb 27 2024 *)

Formula

a(n) = A347834(n, 2) = A178415(A265667(n), 3), for n >= 1.
a(n) = ((3*A047529(n) + 1)*16 - 1)/3 = ((3*(n + floor(n/3)) - 1)*32 - 1)/3 = ((A319451(n) - 1)*32 - 1)/3, for n >= 1.
O.g.f.: G(x) = (-11 + 32*x + 32*x^2 + 75*x^3)/((1 - x)*(1 - x^3)), with a(0) = -11.

A323824 a(0) = 6; thereafter a(n) = 4*a(n-1) + 1.

Original entry on oeis.org

6, 25, 101, 405, 1621, 6485, 25941, 103765, 415061, 1660245, 6640981, 26563925, 106255701, 425022805, 1700091221, 6800364885, 27201459541, 108805838165, 435223352661, 1740893410645, 6963573642581, 27854294570325, 111417178281301, 445668713125205
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A323824[n_]:=(19*4^n-1)/3;Array[A323824,30,0] (* or *)
    LinearRecurrence[{5,-4},{6,25},30] (* Paolo Xausa, Nov 14 2023 *)
    NestList[4#+1&,6,30] (* Harvey P. Dale, Nov 26 2024 *)
  • PARI
    Vec((6 - 5*x) / ((1 - x)*(1 - 4*x)) + O(x^25)) \\ Colin Barker, Feb 01 2019
    
  • PARI
    a(n) = (19*4^n - 1) / 3 \\ Colin Barker, Feb 01 2019

Formula

G.f.: (6 - 5*x) / ((1 - x)*(1 - 4*x)).
a(n) = (19*4^n - 1) / 3. - Colin Barker, Feb 01 2019
a(n) = A178415(7, n) = A347834(10, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021

A330246 a(n) = 4^(n+1) + (4^n-1)/3.

Original entry on oeis.org

4, 17, 69, 277, 1109, 4437, 17749, 70997, 283989, 1135957, 4543829, 18175317, 72701269, 290805077, 1163220309, 4652881237, 18611524949, 74446099797, 297784399189, 1191137596757, 4764550387029, 19058201548117, 76232806192469, 304931224769877, 1219724899079509
Offset: 0

Views

Author

Vincenzo Librandi, Jan 09 2020

Keywords

Comments

After 4, these numbers are the third column of the rectangular array in A238475.

Crossrefs

Similar to A272743.
Together with 1: first bisection of A136326.

Programs

  • Magma
    [4^(n+1)+(4^n-1)/3: n in [0..30]];
  • Mathematica
    Table[(4^(n + 1) + (4^n - 1) / 3), {n, 0, 30}]

Formula

G.f.: (4 - 3*x) / ((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
a(n) = 4*a(n-1) + 1 for n > 0.
a(n) = (13*4^n -1)/3, for n >= 0. - Wolfdieter Lang, Sep 16 2021
a(n) = A178415(5, n) = A347834(7, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021

A386314 a(1) = 1 and thereafter a(n) is the smallest number k of the form 6*x+-1 not already in the sequence but where the reduced Collatz step A139391(k) is in the sequence.

Original entry on oeis.org

1, 5, 13, 17, 11, 7, 29, 19, 25, 37, 49, 53, 35, 23, 61, 65, 43, 77, 85, 101, 67, 89, 59, 113, 133, 149, 157, 173, 115, 181, 197, 131, 205, 209, 139, 185, 229, 241, 245, 163, 217, 269, 179, 119, 79, 277, 289, 301, 305, 203, 317, 211, 281, 187, 325, 341, 227, 151, 349, 373
Offset: 1

Views

Author

Jules Beauchamp, Jul 18 2025

Keywords

Comments

These numbers are the Collatz pre-images in the form 6*x +- 1 of all previous terms not already in the sequence.
The pre-images of a term t are all p which reach t by a single odd to odd step A139391(p) = t.
These pre-images are those p = (t*2^k-1)/3 with k>=0 which are odd integers, and with here t != 0 (mod 3) there are infinitely many p != 0 (mod 3) for each t.
Multiples of 3 have no odd pre-images and are excluded here in order to have the essential part of the tree of odd to odd descents.
The trajectory of a term t reaches 1 by steps to successively earlier terms in this sequence (at various distances apart).
If the Collatz conjecture is true, then this sequence is permutation of the numbers of the form 6x +- 1 (A007310).

Examples

			a(3) = 13, since 13 (a pre-image of a(2) = 5) is the smallest unused pre-image of a(1) and a(2).
a(10) = 37 since 37 (a pre-image of a(6) = 7) is the smallest unused pre-image of all previous terms.
		

Crossrefs

Programs

  • PARI
    lista(nn) = my(va=List(1), vs = Map(), imin=1, i=imin, nb=1); mapput(vs, 1, 1); while(#vaMichel Marcus, Aug 25 2025
Previous Showing 11-16 of 16 results.