cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A178633 a(n) = 54*((10^n - 1)/9)^2.

Original entry on oeis.org

54, 6534, 665334, 66653334, 6666533334, 666665333334, 66666653333334, 6666666533333334, 666666665333333334, 66666666653333333334, 6666666666533333333334, 666666666665333333333334, 66666666666653333333333334, 6666666666666533333333333334, 666666666666665333333333333334
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n = 1:                   54 = 9 * 6;
n = 2:                 6534 = 99 * 66;
n = 3:               665334 = 999 * 666;
n = 4:             66653334 = 9999 * 6666;
n = 5:           6666533334 = 99999 * 66666;
n = 6:         666665333334 = 999999 * 666666;
n = 7:       66666653333334 = 9999999 * 6666666;
n = 8:     6666666533333334 = 99999999 * 66666666;
n = 9:   666666665333333334 = 999999999 * 666666666.
		

References

  • Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.

Crossrefs

Programs

Formula

a(n) = 54*A002477(n) = A002283(n)*A002280(n).
a(n) = ((A002280(n-1)*10 + 5)*10^(n-1) + A002277(n-1))*10 + 4 = (2/3)*(10^n - 1)^2.
From Colin Barker, Dec 07 2015: (Start)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>3.
G.f.: 54*x*(1+10*x)/((1-x)*(1-10*x)*(1-100*x)). (End)
E.g.f.: 2*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/3. - Elmo R. Oliveira, Aug 01 2025

A178635 a(n) = 72*((10^n - 1)/9)^2.

Original entry on oeis.org

72, 8712, 887112, 88871112, 8888711112, 888887111112, 88888871111112, 8888888711111112, 888888887111111112, 88888888871111111112, 8888888888711111111112, 888888888887111111111112, 88888888888871111111111112, 8888888888888711111111111112, 888888888888887111111111111112
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 72 = 9 * 8;
n=2: ................... 8712 = 99 * 88;
n=3: ................. 887112 = 999 * 888;
n=4: ............... 88871112 = 9999 * 8888;
n=5: ............. 8888711112 = 99999 * 88888;
n=6: ........... 888887111112 = 999999 * 888888;
n=7: ......... 88888871111112 = 9999999 * 8888888;
n=8: ....... 8888888711111112 = 99999999 * 88888888;
n=9: ..... 888888887111111112 = 999999999 * 888888888.
		

References

  • Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.

Crossrefs

Programs

Formula

a(n) = 72*A002477(n) = A002283(n)*A002282(n).
a(n) = ((A002282(n-1)*10 + 7)*10^(n-1) + A002275(n-1))*10 + 2.
G.f.: 72*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
From Elmo R. Oliveira, Aug 01 2025: (Start)
E.g.f.: 8*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. (End)

A271528 a(n) = 2*(10^n - 1)^2/27.

Original entry on oeis.org

0, 6, 726, 73926, 7405926, 740725926, 74073925926, 7407405925926, 740740725925926, 74074073925925926, 7407407405925925926, 740740740725925925926, 74074074073925925925926, 7407407407405925925925926, 740740740740725925925925926, 74074074074073925925925925926
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

All terms are multiple of 6.
Converges in a 10-adic sense to ...925925925926.
A transformation of the Wonderful Demlo numbers (A002477).
More generally, the ordinary generating function for the transformation of the Wonderful Demlo numbers, is k*x*(1 + 10*x)/(1 - 111*x + 1110*x^2 - 1000*x^3).

Examples

			n=1:                  6 = 2 * 3;
n=2:                726 = 22 * 33;
n=3:              73926 = 222 * 333;
n=4:            7405926 = 2222 * 3333;
n=5:          740725926 = 22222 * 33333;
n=6:        74073925926 = 222222 * 333333;
n=7:      7407405925926 = 2222222 * 3333333;
n=8:    740740725925926 = 22222222 * 33333333;
n=9:  74074073925925926 = 222222222 * 333333333, etc.
		

Crossrefs

Cf. similar sequences of the form k*((10^n - 1)/9)^2: A075411 (k=4), this sequence (k=6), A075412 (k=9), A075413 (k=16), A178630 (k=18), A075414 (k=25), A178631 (k=27), A075415 (k=36), A178632 (k=45), A075416 (k=49), A178633 (k=54), A178634 (k=63), A075417 (k=64), A178635 (k=72), A059988 (k=81).

Programs

  • Mathematica
    Table[2 ((10^n - 1)^2/27), {n, 0, 15}]
    LinearRecurrence[{111, -1110, 1000}, {0, 6, 726}, 16]
  • PARI
    x='x+O('x^99); concat(0, Vec(6*x*(1+10*x)/(1-111*x+1110*x^2-1000*x^3))) \\ Altug Alkan, Apr 09 2016
    
  • Python
    for n in range(0,10**1):print((int)((2*(10**n-1)**2)/27))
    # Soumil Mandal, Apr 10 2016

Formula

O.g.f.: 6*x*(1 + 10*x)/(1 - 111*x + 1110*x^2 - 1000*x^3).
E.g.f.: 2 (exp(x) - 2*exp(10*x) + exp(100*x))/27.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
a(n) = 6*A002477(n) = 6*A002275(n)^2 = A002276(n)*A002277(n) = sqrt(A075411(n)*A075412(n)).
Sum_{n>=1} 1/a(n) = 0.1680577405662077350849154881928636039793563...
Lim_{n -> infinity} a(n + 1)/a(n) = 100.
Previous Showing 11-13 of 13 results.