cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A376822 Number of colorings of a toroidal n X n grid using exactly two colors under translational symmetry.

Original entry on oeis.org

0, 5, 62, 4154, 1342206, 1908897150, 11488774559742, 288230376353050814, 29850020237398264483838, 12676506002282327791964489726, 21970710674130840874443091905462270, 154866286100907105149651981766316633972734, 4427744605404865645682169434028029029963535286270
Offset: 1

Views

Author

Andrew Howroyd, Oct 05 2024

Keywords

Crossrefs

Main diagonal of A294684.
Cf. A179043, A376747 (colors permutable), A376823, A376824, A376825.

Formula

a(n) = A179043(n) - 2.

A376823 Number of colorings of a toroidal n X n grid using exactly three colors under translational symmetry.

Original entry on oeis.org

0, 9, 2022, 2679246, 33887517990, 4169289730628814, 4883659745750360600262, 53651309691205903304049168186, 5474401089420129832016444491921748358, 5153775207320113272335114827748860107542139918, 44553974378043749018442678682265335735181851572329684070
Offset: 1

Views

Author

Andrew Howroyd, Oct 05 2024

Keywords

Crossrefs

Main diagonal of A294685.
Cf. A179043, A184278, A376748 (colors permutable), A376822, A376824, A376825.

Formula

a(n) = A184278(n) - 3*A179043(n) + 3.

A376824 Number of colorings of a toroidal n X n grid using exactly four colors under translational symmetry.

Original entry on oeis.org

0, 6, 20720, 257706024, 44900438149488, 131160169581733489616, 6467585568566200114362823920, 5316911768534424725926923896066891424, 72172920340122292837562997014593985220649867760, 16069380442569287654590340470284256047904187412954757496784
Offset: 1

Views

Author

Andrew Howroyd, Oct 05 2024

Keywords

Crossrefs

Main diagonal of A294686.
Cf. A179043, A184272, A184278, A376749 (colors permutable), A376822, A376823, A376825.

Formula

a(n) = A184272(n) - 4*A184278(n) + 6*A179043(n) - 4.

A323862 Table read by antidiagonals where A(n,k) is the number of n X k binary arrays in which both the sequence of rows and the sequence of columns are (independently) aperiodic.

Original entry on oeis.org

2, 2, 2, 6, 10, 6, 12, 54, 54, 12, 30, 228, 498, 228, 30, 54, 990, 4020, 4020, 990, 54, 126, 3966, 32730, 65040, 32730, 3966, 126, 240, 16254, 261522, 1047540, 1047540, 261522, 16254, 240, 504, 65040, 2097018, 16768860, 33554370, 16768860, 2097018, 65040, 504
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

A sequence of length n is aperiodic if all n rotations of its entries are distinct.

Examples

			Array begins:
        2        2        6       12       30
        2       10       54      228      990
        6       54      498     4020    32730
       12      228     4020    65040  1047540
       30      990    32730  1047540 33554370
		

Crossrefs

First and last columns are A027375. Main diagonal is A265627.

Programs

  • Mathematica
    nn=5;
    a[n_,k_]:=Sum[MoebiusMu[d]*MoebiusMu[e]*2^(n/d*k/e),{d,Divisors[n]},{e,Divisors[k]}];
    Table[a[n-k,k],{n,nn},{k,n-1}]
  • PARI
    A(n,k) = {sumdiv(n, d, sumdiv(k,e, moebius(d) * moebius(e) * 2^((n/d) * (k/e))))} \\ Andrew Howroyd, Jan 19 2023

Formula

A(n,k) = Sum_{d|n, e|k} mu(d) * mu(e) * 2^((n/d) * (k/e)).

A323872 Number of n X n aperiodic binary toroidal necklaces.

Original entry on oeis.org

1, 2, 2, 54, 4050, 1342170, 1908852102, 11488774559598, 288230375950387200, 29850020237398244599296, 12676506002282260237970435130, 21970710674130840874443091905460038, 154866286100907105149455216472736043777350, 4427744605404865645682169434028029029963535277450
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

The 1-dimensional (Lyndon word) case is A001037.
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			Inequivalent representatives of the a(2) = 2 aperiodic necklaces:
  [0 0] [0 1]
  [0 1] [1 1]
Inequivalent representatives of the a(3) = 54 aperiodic necklaces:
  000  000  000  000  000  000  000  000  000
  000  000  001  001  001  001  001  001  001
  001  011  001  010  011  100  101  110  111
.
  000  000  000  000  000  000  000  000  000
  011  011  011  011  011  011  011  111  111
  001  010  011  100  101  110  111  001  011
.
  001  001  001  001  001  001  001  001  001
  001  001  001  001  001  001  010  010  010
  010  011  100  101  110  111  011  101  110
.
  001  001  001  001  001  001  001  001  001
  010  011  011  011  011  011  100  100  100
  111  010  011  101  110  111  011  110  111
.
  001  001  001  001  001  001  001  001  001
  101  101  101  101  110  110  110  110  111
  011  101  110  111  011  101  110  111  011
.
  001  001  001  011  011  011  011  011  011
  111  111  111  011  011  011  101  110  111
  101  110  111  101  110  111  111  111  111
		

Crossrefs

Programs

  • Mathematica
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
    Table[Length[Select[(Partition[#,n]&)/@Tuples[{0,1},n^2],And[apermatQ[#],neckmatQ[#]]&]],{n,4}]

Extensions

Terms a(5) and beyond from Andrew Howroyd, Aug 21 2019

A209251 Number of n X n checkered tori, allowing rotation and/or reflection of the rows and/or the columns.

Original entry on oeis.org

1, 2, 7, 36, 1459, 340880, 478070832, 2872221202512, 72057630729710704, 7462505061854009276768, 3169126500599982009308551168, 5492677668532714149024993226980288, 38716571525226776692749451887896112574464
Offset: 0

Views

Author

Jonathan Vos Post, Jan 14 2013

Keywords

Comments

Main diagonal from p. 8, Ethier, of Table 4: The number b(m, n) of toroidal m X n binary arrays, allowing rotation and/or reflection of the rows and/or the columns, for m, n = 1, 2, ..., 8 (cf. A222188).

Crossrefs

Main diagonal of A222188.
Cf. A179043, A184271 (n X k toroidal binary arrays).

Programs

  • Mathematica
    b1[m_, n_] := Sum[EulerPhi[c]*EulerPhi[d]*2^(m*n/LCM[c, d]), {c, Divisors[m]}, {d, Divisors[n]}]/(4*m*n);
    b2a[m_, n_] := If[OddQ[m], 2^((m + 1)*n/2)/(4*n), (2^(m*n/2) + 2^((m + 2)*n/2))/(8*n)];
    b2b[m_, n_] := DivisorSum[n, If[# >= 2, EulerPhi[#]*2^((m*n)/#), 0] &]/(4*n);
    b2c[m_, n_] := If[OddQ[m], Sum[If[OddQ[n/GCD[j, n]], 2^((m + 1)*GCD[j, n]/2) - 2^(m*GCD[j, n]), 0], {j, 1, n - 1}]/(4*n), Sum[If[OddQ[n/GCD[j, n]], 2^(m*GCD[j, n]/2) + 2^((m + 2)*GCD[j, n]/2) - 2^(m*GCD[j, n] + 1), 0], {j, 1, n - 1}]/(8*n)];
    b2[m_, n_] := b2a[m, n] + b2b[m, n] + b2c[m, n];
    b3[m_, n_] := b2[n, m]; b4oo[m_, n_] := 2^((m*n - 3)/2);
    b4eo[m_, n_] := 3*2^(m*n/2 - 3); b4ee[m_, n_] := 7*2^(m*n/2 - 4);
    a[m_, n_] := Module[{b}, If[OddQ[m], If[OddQ[n], b = b4oo[m, n], b = b4eo[m, n]], If[OddQ[n], b = b4eo[m, n], b = b4ee[m, n]]]; b += b1[m, n] + b2[m, n] + b3[m, n]; Return[b]];
    a[0] = 1; a[n_] := a[n, n];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Oct 08 2017, after Michel Marcus's code for A222188 *)

Extensions

More terms from Michel Marcus, Feb 13 2013
a(0)=1 prepended by Andrew Howroyd, Sep 30 2017

A255015 Number of toroidal n X n binary arrays, allowing rotation of rows and/or columns as well as matrix transposition.

Original entry on oeis.org

1, 2, 6, 44, 2209, 674384, 954623404, 5744406453840, 144115192471496836, 14925010120653819583840, 6338253001142965335834871200, 10985355337065423791175013899922368, 77433143050453552587418968170813573149024
Offset: 0

Views

Author

Stewart N. Ethier, Feb 12 2015

Keywords

Crossrefs

Cf. A184271 (number of m X n binary arrays allowing rotation of rows/columns), A179043 (main diagonal of A184271), A222188 (number of m X n binary arrays allowing rotation/reflection of rows/columns), A209251 (main diagonal of A222188), A255016 (number of n X n binary arrays allowing rotation/reflection of rows/columns as well as matrix transposition).

Programs

  • Mathematica
    a[n_] := (2 n^2)^(-1) Sum[If[Mod[n, c] == 0, Sum[If[Mod[n, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n^2/ LCM[c, d]), 0], {d, 1, n}], 0], {c, 1, n}] + (2 n)^(-1) Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n (n + d - 2 IntegerPart[d/2])/(2 d)), 0], {d, 1, n}];

Formula

a(n) = (2*n^2)^{-1} Sum_{ c divides n } Sum_{ d divides n } phi(c)*phi(d)* 2^(n^2/lcm(c,d)) + (2*n)^{-1} Sum_{ d divides n } phi(d)*2^(n*(n + d - 2 *floor(d/2))/(2*d)), where phi is A000010.

Extensions

a(0)=1 from Alois P. Heinz, Feb 19 2015
Previous Showing 11-17 of 17 results.