cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A179592 Decimal expansion of the circumradius of pentagonal cupola with edge length 1.

Original entry on oeis.org

2, 2, 3, 2, 9, 5, 0, 5, 0, 9, 4, 1, 5, 6, 9, 0, 0, 4, 9, 5, 0, 0, 4, 1, 5, 3, 8, 3, 2, 4, 9, 6, 8, 2, 7, 7, 2, 9, 3, 4, 0, 8, 0, 7, 3, 0, 5, 7, 9, 1, 8, 1, 6, 4, 7, 4, 5, 7, 4, 4, 1, 2, 6, 0, 8, 2, 5, 5, 6, 5, 8, 9, 4, 9, 0, 1, 6, 4, 3, 8, 2, 8, 9, 6, 2, 4, 5, 1, 9, 5, 0, 6, 0, 9, 2, 7, 3, 7, 3, 8, 5, 6, 4, 7, 4
Offset: 1

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			2.232950509415690049500415383249682772934080730579181647457441260...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[11+4*Sqrt[5]]/2,200]]

Formula

Digits of sqrt(11+4*sqrt(5))/2.

A385802 Decimal expansion of the volume of a parabiaugmented dodecahedron with unit edge.

Original entry on oeis.org

8, 2, 6, 6, 1, 2, 4, 6, 2, 5, 4, 1, 6, 2, 8, 1, 1, 1, 0, 0, 8, 3, 4, 8, 5, 0, 5, 9, 3, 4, 0, 6, 7, 3, 0, 9, 8, 3, 0, 7, 8, 0, 0, 3, 2, 5, 9, 5, 4, 4, 6, 3, 8, 2, 7, 8, 2, 9, 9, 7, 8, 2, 8, 3, 2, 5, 2, 6, 2, 1, 6, 9, 7, 0, 0, 2, 6, 4, 2, 3, 1, 5, 5, 9, 3, 0, 9, 3, 0, 8
Offset: 1

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The parabiaugmented dodecahedron is Johnson solid J_59.
Also the volume of a metabiaugmented dodecahedron (Johnson solid J_60) with unit edge.

Examples

			8.266124625416281110083485059340673098307800325954...
		

Crossrefs

Cf. A385803 (surface area).

Programs

  • Mathematica
    First[RealDigits[(25 + 11*Sqrt[5])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J59", "Volume"], 10, 100]]

Formula

Equals (25 + 11*sqrt(5))/6 = (25 + 11*A002163)/6.
Equals A102769 + 2*A179552.
Equals the largest root of 9*x^2 - 75*x + 5.

A385804 Decimal expansion of the volume of a triaugmented dodecahedron with unit edge.

Original entry on oeis.org

8, 5, 6, 7, 6, 2, 7, 4, 5, 7, 8, 1, 2, 1, 0, 5, 6, 8, 0, 7, 6, 7, 2, 0, 0, 6, 2, 8, 8, 7, 1, 1, 4, 2, 9, 4, 1, 4, 5, 1, 1, 5, 9, 4, 2, 4, 2, 7, 1, 6, 1, 0, 7, 3, 3, 0, 0, 7, 9, 3, 2, 3, 3, 5, 1, 4, 4, 7, 2, 6, 7, 3, 5, 5, 7, 0, 8, 8, 4, 1, 8, 6, 4, 0, 2, 0, 2, 7, 0, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The triaugmented dodecahedron is Johnson solid J_61.

Examples

			8.56762745781210568076720062887114294145115942427...
		

Crossrefs

Cf. A385805 (surface area).

Programs

  • Mathematica
    First[RealDigits[5/8*(7 + Sqrt[45]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J61", "Volume"], 10, 100]]

Formula

Equals (5/8)*(7 + 3*sqrt(5)) = (5/8)*(7 + A010499).
Equals A102769 + 3*A179552.
Equals the largest root of 16*x^2 - 140*x + 25.
Equals A377697^2. - Hugo Pfoertner, Jul 13 2025

A385695 Decimal expansion of the volume of an augmented dodecahedron with unit edge.

Original entry on oeis.org

7, 9, 6, 4, 6, 2, 1, 7, 9, 3, 0, 2, 0, 4, 5, 6, 5, 3, 9, 3, 9, 9, 7, 6, 9, 4, 8, 9, 8, 1, 0, 2, 0, 3, 2, 5, 5, 1, 6, 4, 4, 4, 1, 2, 2, 7, 6, 3, 7, 3, 1, 6, 9, 2, 2, 6, 5, 2, 0, 2, 4, 2, 3, 1, 3, 6, 0, 5, 1, 6, 6, 5, 8, 4, 3, 4, 4, 0, 0, 4, 4, 4, 7, 8, 4, 1, 5, 9, 1, 4
Offset: 1

Views

Author

Paolo Xausa, Jul 08 2025

Keywords

Comments

The augmented dodecahedron is Johnson solid J_58.

Examples

			7.9646217930204565393997694898102032551644412276373...
		

Crossrefs

Cf. A385696 (surface area).

Programs

  • Mathematica
    First[RealDigits[(95 + 43*Sqrt[5])/24, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J58", "Volume"], 10, 100]]

Formula

Equals (95 + 43*sqrt(5))/24 = (95 + 43*A002163)/24.
Equals A102769 + A179552.
Equals the largest root of 144*x^2 - 1140*x - 55.

A386000 Decimal expansion of the volume of a tridiminished icosahedron with unit edge.

Original entry on oeis.org

1, 2, 7, 7, 1, 8, 6, 4, 9, 3, 4, 3, 7, 4, 3, 8, 6, 6, 1, 4, 5, 2, 6, 7, 5, 6, 5, 3, 3, 7, 9, 9, 5, 5, 5, 6, 8, 6, 7, 0, 1, 8, 0, 3, 5, 4, 8, 8, 6, 6, 9, 5, 0, 0, 2, 9, 1, 2, 3, 4, 5, 0, 2, 9, 9, 1, 1, 4, 0, 1, 9, 3, 6, 6, 4, 4, 3, 5, 9, 7, 6, 2, 3, 2, 9, 2, 0, 4, 2, 0
Offset: 1

Views

Author

Paolo Xausa, Jul 14 2025

Keywords

Comments

The tridiminished icosahedron is Johnson solid J_63.

Examples

			1.277186493437438661452675653379955568670180...
		

Crossrefs

Cf. A386001 (surfacea area).

Programs

  • Mathematica
    First[RealDigits[5/8 + 7*Sqrt[5]/24, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J63", "Volume"], 10, 100]]

Formula

Equals 5/8 + 7*sqrt(5)/24 = 5/8 + 7*A002163/24.
Equals A102208 - 3*A179552 = A386002 - A020829.
Equals the largest root of 144*x^2 - 180*x - 5.

A386002 Decimal expansion of the volume of an augmented tridiminished icosahedron with unit edge.

Original entry on oeis.org

1, 3, 9, 5, 0, 3, 7, 6, 2, 3, 6, 3, 5, 1, 9, 6, 5, 8, 2, 1, 8, 6, 1, 4, 9, 7, 1, 3, 7, 3, 0, 7, 6, 3, 7, 4, 1, 8, 8, 4, 3, 1, 9, 6, 7, 7, 8, 3, 4, 7, 7, 4, 0, 0, 9, 0, 1, 0, 4, 0, 1, 6, 7, 4, 7, 4, 3, 9, 6, 2, 9, 7, 6, 5, 1, 6, 2, 0, 2, 0, 1, 5, 5, 6, 6, 7, 3, 6, 4, 9
Offset: 1

Views

Author

Paolo Xausa, Jul 18 2025

Keywords

Comments

The augmented tridiminished icosahedron is Johnson solid J_64.

Examples

			1.3950376236351965821861497137307637418843196778...
		

Crossrefs

Cf. A386003 (surface area).

Programs

  • Mathematica
    First[RealDigits[(15 + Sqrt[8] + 7*Sqrt[5])/24, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J64", "Volume"], 10, 100]]

Formula

Equals (15 + 2*sqrt(2) + 7*sqrt(5))/24 = (15 + A010466 + 7*A002163)/24.
Equals the largest root of 2304*x^4 - 5760*x^3 + 3376*x^2 + 280*x - 49.

A179639 Decimal expansion of the volume of gyroelongated pentagonal pyramid with edge length 1.

Original entry on oeis.org

1, 8, 8, 0, 1, 9, 2, 1, 5, 8, 2, 2, 9, 0, 8, 7, 8, 0, 2, 8, 2, 0, 1, 0, 6, 7, 9, 2, 4, 4, 0, 8, 9, 5, 2, 5, 4, 9, 5, 6, 8, 9, 8, 5, 5, 1, 5, 2, 0, 9, 8, 8, 8, 1, 3, 2, 6, 8, 2, 5, 3, 1, 3, 3, 6, 9, 5, 6, 1, 2, 0, 1, 3, 7, 8, 0, 8, 4, 3, 5, 0, 3, 9, 4, 7, 0, 7, 2, 0, 6, 9, 8, 0, 8, 7, 1, 0, 0, 1, 9, 7, 8, 0, 2, 3
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated pentagonal pyramid: 11 vertices,25 edges,and 16 faces.

Examples

			1.88019215822908780282010679244089525495689855152098881326825313369561...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(25+9*Sqrt[5])/24,200]]

Formula

Digits of (25+9*sqrt(5))/24.

A179640 Decimal expansion of the surface area of gyroelongated pentagonal pyramid with edge length 1.

Original entry on oeis.org

8, 2, 1, 5, 6, 6, 7, 9, 2, 8, 9, 7, 2, 2, 5, 6, 7, 7, 3, 4, 8, 6, 9, 3, 5, 7, 5, 8, 0, 3, 5, 6, 3, 0, 9, 7, 5, 4, 4, 2, 8, 9, 3, 8, 7, 1, 7, 9, 9, 1, 2, 5, 6, 8, 4, 4, 1, 6, 3, 7, 0, 8, 7, 9, 9, 6, 8, 6, 1, 7, 8, 0, 5, 6, 1, 6, 9, 6, 6, 3, 7, 0, 3, 8, 6, 7, 3, 9, 4, 4, 1, 7, 2, 7, 2, 6, 9, 8, 9, 9, 2, 7, 7, 4, 7
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated pentagonal pyramid: 11 vertices, 25 edges, and 16 faces.

Examples

			8.21566792897225677348693575803563097544289387179912568441637087996861...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5/2*(70+Sqrt[5]+3*Sqrt[75+30*Sqrt[5]])]/2,200]]

Formula

Digits of sqrt(5/2*(70+sqrt(5)+3*sqrt(75+30*sqrt(5))))/2.

A179641 Decimal expansion of the volume of pentagonal dipyramid with edge length 1.

Original entry on oeis.org

6, 0, 3, 0, 0, 5, 6, 6, 4, 7, 9, 1, 6, 4, 9, 1, 4, 1, 3, 6, 7, 4, 3, 1, 1, 3, 9, 0, 6, 0, 9, 3, 9, 6, 8, 6, 2, 8, 6, 7, 1, 8, 1, 9, 6, 6, 3, 4, 2, 9, 3, 8, 1, 0, 3, 5, 5, 9, 0, 8, 1, 0, 3, 7, 8, 4, 2, 1, 0, 0, 7, 7, 1, 3, 6, 4, 8, 3, 7, 4, 1, 6, 1, 7, 8, 6, 7, 8, 6, 7, 3, 6, 4, 8, 9, 8, 5, 2, 2, 9, 1, 4, 1, 2, 5
Offset: 0

Views

Author

Keywords

Comments

Pentagonal dipyramid: 7 vertices, 15 edges, and 10 faces.

Examples

			0.60300566479164914136743113906093968628671819663429381035590810378421...
		

Crossrefs

Programs

Formula

Digits of (5+sqrt(5))/12.

Extensions

Offset corrected by R. J. Mathar, Aug 15 2010

A385857 Decimal expansion of the volume of a metabidiminished icosahedron with unit edge.

Original entry on oeis.org

1, 5, 7, 8, 6, 8, 9, 3, 2, 5, 8, 3, 3, 2, 6, 3, 2, 3, 2, 1, 3, 6, 3, 9, 1, 2, 2, 2, 9, 1, 0, 4, 2, 5, 4, 1, 1, 8, 1, 3, 5, 3, 9, 4, 5, 3, 2, 0, 3, 8, 4, 1, 9, 0, 8, 0, 9, 0, 2, 9, 9, 0, 8, 1, 8, 0, 3, 5, 0, 6, 9, 7, 5, 2, 1, 2, 6, 0, 1, 6, 3, 3, 1, 3, 8, 1, 3, 8, 1, 3
Offset: 1

Views

Author

Paolo Xausa, Jul 14 2025

Keywords

Comments

The metabidiminished icosahedron is Johnson solid J_62.

Examples

			1.5786893258332632321363912229104254118135394532...
		

Crossrefs

Cf. A384625 (surface area + 10).

Programs

  • Mathematica
    First[RealDigits[(5 + Sqrt[20])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J62", "Volume"], 10, 100]]

Formula

Equals (5 + 2*sqrt(5))/6 = (5 + A010476)/6.
Equals A102208 - 2*A179552.
Equals the largest root of 36*x^2 - 60*x + 5.
Previous Showing 11-20 of 22 results. Next