cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A385258 Decimal expansion of the volume of a gyroelongated square bicupola with unit edge.

Original entry on oeis.org

8, 1, 5, 3, 5, 7, 4, 8, 3, 3, 6, 2, 1, 2, 6, 3, 4, 0, 2, 5, 2, 6, 0, 2, 1, 3, 1, 6, 2, 6, 6, 2, 7, 2, 7, 0, 2, 6, 7, 3, 2, 1, 4, 9, 0, 4, 4, 9, 8, 3, 7, 7, 2, 2, 7, 1, 4, 8, 6, 3, 4, 8, 6, 4, 0, 9, 8, 4, 8, 4, 3, 6, 5, 6, 8, 3, 6, 7, 6, 5, 2, 1, 8, 9, 9, 6, 8, 5, 4, 9
Offset: 1

Views

Author

Paolo Xausa, Jun 26 2025

Keywords

Comments

The gyroelongated square bicupola is Johnson solid J_45.

Examples

			8.1535748336212634025260213162662727026732149...
		

Crossrefs

Cf. A385259 (surface area).

Programs

  • Mathematica
    First[RealDigits[2/3*(3 + 2*# + Sqrt[2*(2 + # + Sqrt[146 + 103*#])]) & [Sqrt[2]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J45", "Volume"], 10, 100]]

Formula

Equals (2/3)*(3 + 2*sqrt(2) + sqrt(2*(2 + sqrt(2) + sqrt(146 + 103*sqrt(2))))) = (2/3)*(3 + A010466 + sqrt(2*(2 + A002193 + sqrt(146 + 103*A002193)))).
Equals the largest real root of 6561*x^8 - 104976*x^7 + 594864*x^6 - 1384128*x^5 - 552096*x^4 + 1569024*x^3 + 246528*x^2 - 119808*x + 4352.

A179593 Decimal expansion of the volume of pentagonal rotunda with edge length 1.

Original entry on oeis.org

6, 9, 1, 7, 7, 6, 2, 9, 6, 8, 1, 2, 4, 7, 0, 2, 0, 6, 9, 9, 1, 2, 9, 9, 6, 0, 3, 0, 7, 0, 2, 6, 4, 1, 3, 3, 3, 5, 4, 0, 8, 7, 6, 0, 0, 9, 4, 4, 9, 6, 6, 1, 4, 4, 2, 7, 1, 7, 1, 0, 4, 4, 3, 0, 9, 9, 8, 2, 3, 7, 9, 7, 7, 9, 8, 6, 8, 9, 0, 2, 7, 4, 1, 7, 0, 4, 2, 0, 4, 1, 1, 8, 6, 9, 9, 4, 1, 5, 5, 6, 2, 0, 6, 8, 0
Offset: 1

Views

Author

Keywords

Comments

Pentagonal rotunda: 20 vertices, 35 edges, and 17 faces.

Examples

			6.91776296812470206991299603070264133354087600944966144271710443099823...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(45+17*Sqrt[5])/12,200]]

Formula

Digits of (45+17*sqrt(5))/12.

A179592 Decimal expansion of the circumradius of pentagonal cupola with edge length 1.

Original entry on oeis.org

2, 2, 3, 2, 9, 5, 0, 5, 0, 9, 4, 1, 5, 6, 9, 0, 0, 4, 9, 5, 0, 0, 4, 1, 5, 3, 8, 3, 2, 4, 9, 6, 8, 2, 7, 7, 2, 9, 3, 4, 0, 8, 0, 7, 3, 0, 5, 7, 9, 1, 8, 1, 6, 4, 7, 4, 5, 7, 4, 4, 1, 2, 6, 0, 8, 2, 5, 5, 6, 5, 8, 9, 4, 9, 0, 1, 6, 4, 3, 8, 2, 8, 9, 6, 2, 4, 5, 1, 9, 5, 0, 6, 0, 9, 2, 7, 3, 7, 3, 8, 5, 6, 4, 7, 4
Offset: 1

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			2.232950509415690049500415383249682772934080730579181647457441260...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[11+4*Sqrt[5]]/2,200]]

Formula

Digits of sqrt(11+4*sqrt(5))/2.

A179639 Decimal expansion of the volume of gyroelongated pentagonal pyramid with edge length 1.

Original entry on oeis.org

1, 8, 8, 0, 1, 9, 2, 1, 5, 8, 2, 2, 9, 0, 8, 7, 8, 0, 2, 8, 2, 0, 1, 0, 6, 7, 9, 2, 4, 4, 0, 8, 9, 5, 2, 5, 4, 9, 5, 6, 8, 9, 8, 5, 5, 1, 5, 2, 0, 9, 8, 8, 8, 1, 3, 2, 6, 8, 2, 5, 3, 1, 3, 3, 6, 9, 5, 6, 1, 2, 0, 1, 3, 7, 8, 0, 8, 4, 3, 5, 0, 3, 9, 4, 7, 0, 7, 2, 0, 6, 9, 8, 0, 8, 7, 1, 0, 0, 1, 9, 7, 8, 0, 2, 3
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated pentagonal pyramid: 11 vertices,25 edges,and 16 faces.

Examples

			1.88019215822908780282010679244089525495689855152098881326825313369561...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(25+9*Sqrt[5])/24,200]]

Formula

Digits of (25+9*sqrt(5))/24.

A179640 Decimal expansion of the surface area of gyroelongated pentagonal pyramid with edge length 1.

Original entry on oeis.org

8, 2, 1, 5, 6, 6, 7, 9, 2, 8, 9, 7, 2, 2, 5, 6, 7, 7, 3, 4, 8, 6, 9, 3, 5, 7, 5, 8, 0, 3, 5, 6, 3, 0, 9, 7, 5, 4, 4, 2, 8, 9, 3, 8, 7, 1, 7, 9, 9, 1, 2, 5, 6, 8, 4, 4, 1, 6, 3, 7, 0, 8, 7, 9, 9, 6, 8, 6, 1, 7, 8, 0, 5, 6, 1, 6, 9, 6, 6, 3, 7, 0, 3, 8, 6, 7, 3, 9, 4, 4, 1, 7, 2, 7, 2, 6, 9, 8, 9, 9, 2, 7, 7, 4, 7
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated pentagonal pyramid: 11 vertices, 25 edges, and 16 faces.

Examples

			8.21566792897225677348693575803563097544289387179912568441637087996861...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5/2*(70+Sqrt[5]+3*Sqrt[75+30*Sqrt[5]])]/2,200]]

Formula

Digits of sqrt(5/2*(70+sqrt(5)+3*sqrt(75+30*sqrt(5))))/2.

A179641 Decimal expansion of the volume of pentagonal dipyramid with edge length 1.

Original entry on oeis.org

6, 0, 3, 0, 0, 5, 6, 6, 4, 7, 9, 1, 6, 4, 9, 1, 4, 1, 3, 6, 7, 4, 3, 1, 1, 3, 9, 0, 6, 0, 9, 3, 9, 6, 8, 6, 2, 8, 6, 7, 1, 8, 1, 9, 6, 6, 3, 4, 2, 9, 3, 8, 1, 0, 3, 5, 5, 9, 0, 8, 1, 0, 3, 7, 8, 4, 2, 1, 0, 0, 7, 7, 1, 3, 6, 4, 8, 3, 7, 4, 1, 6, 1, 7, 8, 6, 7, 8, 6, 7, 3, 6, 4, 8, 9, 8, 5, 2, 2, 9, 1, 4, 1, 2, 5
Offset: 0

Views

Author

Keywords

Comments

Pentagonal dipyramid: 7 vertices, 15 edges, and 10 faces.

Examples

			0.60300566479164914136743113906093968628671819663429381035590810378421...
		

Crossrefs

Programs

Formula

Digits of (5+sqrt(5))/12.

Extensions

Offset corrected by R. J. Mathar, Aug 15 2010

A195433 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,1,sqrt(2)).

Original entry on oeis.org

6, 1, 4, 7, 5, 7, 2, 2, 7, 2, 3, 3, 3, 9, 0, 6, 2, 1, 5, 9, 3, 3, 1, 9, 2, 4, 8, 0, 9, 1, 1, 9, 0, 0, 9, 9, 4, 7, 1, 1, 6, 2, 5, 4, 4, 6, 2, 5, 6, 9, 8, 3, 6, 3, 8, 5, 8, 2, 6, 4, 6, 7, 2, 6, 2, 1, 6, 2, 5, 6, 1, 1, 4, 6, 1, 7, 9, 6, 2, 0, 4, 1, 6, 1, 6, 8, 8, 1, 5, 6, 9, 9, 9, 1, 9, 3, 9, 5, 0, 1
Offset: 0

Views

Author

Clark Kimberling, Sep 18 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			(A)=0.6147572272333906215933192480911...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = 1; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195433 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B)=(2/3)sqrt(2); -1+A179587 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (C) A195433 *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195436 *)

A195436 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the 1,1,sqrt(2) right triangle ABC.

Original entry on oeis.org

6, 3, 6, 2, 5, 8, 8, 2, 1, 0, 6, 1, 8, 3, 8, 3, 0, 8, 3, 9, 1, 0, 4, 9, 4, 6, 4, 7, 1, 0, 4, 3, 7, 5, 9, 8, 2, 9, 4, 2, 4, 3, 3, 0, 0, 8, 7, 6, 1, 6, 2, 8, 8, 5, 0, 0, 2, 6, 7, 6, 5, 8, 5, 1, 0, 8, 4, 8, 1, 3, 7, 7, 6, 0, 3, 6, 0, 0, 4, 4, 4, 8, 7, 7, 2, 6, 6, 5, 6, 5, 0, 1, 9, 9, 7, 7, 4, 4, 7, 3
Offset: 0

Views

Author

Clark Kimberling, Sep 18 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			Philo(ABC,G)=0.636258821061838308391049464710...
		

Crossrefs

Cf. A195304.

Programs

  • Mathematica
    a = 1; b = 1; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195433 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B)=sqrt(8/9), -1+A179587  *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (C) A195433 *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195436 *)

A378388 Decimal expansion of the surface area of a tetrakis hexahedron with unit shorter edge length.

Original entry on oeis.org

1, 1, 9, 2, 5, 6, 9, 5, 8, 7, 9, 9, 9, 8, 8, 7, 8, 3, 8, 0, 8, 4, 8, 9, 2, 6, 2, 3, 3, 2, 3, 3, 4, 7, 3, 2, 5, 5, 6, 8, 3, 2, 9, 7, 9, 1, 7, 9, 2, 8, 1, 3, 7, 1, 9, 6, 1, 1, 1, 4, 5, 1, 9, 7, 5, 5, 2, 2, 7, 7, 8, 2, 7, 0, 0, 6, 8, 2, 9, 2, 7, 9, 6, 8, 7, 6, 8, 7, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Nov 27 2024

Keywords

Comments

The tetrakis hexahedron is the dual polyhedron of the truncated octahedron.

Examples

			11.925695879998878380848926233233473255683297917928...
		

Crossrefs

Cf. A374359 (volume - 1), A010532 (inradius*10), A179587 (midradius + 1), A378389 (dihedral angle).
Cf. A377341 (surface area of a truncated octahedron with unit edge).

Programs

  • Mathematica
    First[RealDigits[16*Sqrt[5]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TetrakisHexahedron", "SurfaceArea"], 10, 100]]

Formula

Equals (16/3)*sqrt(5) = (16/3)*A002163 = 16*A208899.

A386459 Decimal expansion of the volume of an augmented truncated cube with unit edges.

Original entry on oeis.org

1, 5, 5, 4, 2, 4, 7, 2, 3, 3, 2, 6, 5, 6, 5, 0, 6, 9, 2, 6, 9, 4, 2, 3, 3, 9, 8, 6, 2, 4, 5, 1, 7, 2, 3, 0, 8, 5, 7, 0, 4, 9, 1, 6, 6, 6, 8, 6, 7, 7, 0, 5, 6, 3, 9, 0, 2, 7, 5, 6, 2, 5, 2, 6, 9, 2, 8, 3, 9, 0, 6, 5, 5, 1, 7, 9, 7, 9, 0, 4, 2, 0, 7, 2, 0, 2, 0, 6, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Jul 22 2025

Keywords

Comments

The augmented truncated cube is Johnson solid J_66.

Examples

			15.5424723326565069269423398624517230857049...
		

Crossrefs

Cf. A386460 (surface area).

Programs

  • Mathematica
    First[RealDigits[8 + 16*Sqrt[2]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J66", "Volume"], 10, 100]]

Formula

Equals 8 + 16*sqrt(2)/3 = 8 + 16*A131594.
Equals A377299 + A179587.
Equals the largest root of 9*x^2 - 144*x + 64.
Previous Showing 11-20 of 23 results. Next