cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A334504 Eventual period of a single cell in rule 26 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 6, 1, 20, 2, 28, 1, 72, 6, 88, 4, 104, 14, 120, 1, 272, 14, 304, 12, 336, 62, 368, 8, 400, 126, 432, 28, 464, 30, 496, 1, 1056, 30, 1120, 28, 1184, 1022, 1248, 24, 1312, 126, 1376, 124, 1440, 4094, 1504, 16, 1568, 2046, 1632, 252, 1696, 1022, 1760
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

It seems that a(2*n+2) = A268754(n) and a(2*n+1) = (2*n+1) * 2^A070939(n) = A363121(n+1)/2 for n > 0. - Andrey Zabolotskiy, Sep 04 2024

Extensions

a(11)-a(40) from Jinyuan Wang, May 09 2020
More terms from Bert Dobbelaere, May 09 2020

A334507 Eventual period of a single cell in rule 122 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 1, 2, 6, 2, 4, 2, 14, 2, 1, 2, 14, 2, 12, 2, 62, 2, 8, 2, 126, 2, 28, 2, 30, 2, 1, 2, 30, 2, 28, 2, 1022, 2, 24, 2, 126, 2, 124, 2, 4094, 2, 16, 2, 2046, 2, 252, 2, 1022, 2, 56, 2, 32766, 2, 60, 2, 62, 2, 1, 2, 62, 2, 60, 2, 8190, 2
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(40) from Jinyuan Wang, May 09 2020
More terms from Bert Dobbelaere, May 09 2020

A334502 Eventual period of a single cell in rule 62 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 8, 5, 3, 14, 3, 3, 3, 3, 3, 26, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

Conjectures from Colin Barker, May 13 2020: (Start)
G.f.: x*(1 + 7*x^3 - 3*x^4 - 2*x^5 + 11*x^6 - 11*x^7 + 23*x^12 - 23*x^13) / (1 - x).
a(n) = a(n-1) for n>14.
(End)

Extensions

More terms from Bert Dobbelaere, May 09 2020

A334505 Eventual period of a single cell in rule 169 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 2, 1, 2, 15, 1, 49, 15, 54, 205, 176, 1, 403, 441, 450, 2688, 2533, 216, 13471, 5240, 798, 14344, 9108, 1, 3175, 3315, 3402, 28518, 504252, 1800, 2228621, 473792, 941952, 2533, 4485250, 864, 7065594, 646, 357084, 132961360, 200241868, 3192, 2825692, 355342152
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(15) from Jinyuan Wang, May 09 2020
a(16)-a(18) from Vaclav Kotesovec, May 10 2020
More terms from Bert Dobbelaere, May 11 2020

A334512 Eventual period of a single cell in rule 105 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 2, 2, 6, 2, 14, 4, 14, 6, 62, 2, 42, 14, 30, 8, 30, 14, 1022, 12, 126, 62, 4094, 4, 2046, 42, 1022, 28, 32766, 30, 62, 16, 62, 30, 8190, 28, 58254, 1022, 8190, 24, 2046, 126, 254, 124, 8190, 4094, 16777214, 8, 4194302, 2046, 510, 84, 134217726, 1022, 2097150, 56, 1022, 32766
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(20) from Jinyuan Wang, May 09 2020
a(21)-a(28) from Vaclav Kotesovec, May 10 2020
More terms from Bert Dobbelaere, May 11 2020

A334514 Eventual period of a single cell in rule 107 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 3, 2, 15, 2, 28, 2, 36, 20, 11, 12, 117, 28, 60, 8, 68, 36, 76, 20, 84, 44, 92, 24, 100, 52, 108, 28, 116, 60, 124, 32, 132, 68, 140, 36, 148, 76, 156, 40, 164, 84, 172, 44, 180, 92, 188, 48, 196, 100, 204, 52, 212, 108, 220, 56, 228, 116, 236, 60, 244, 124
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

Conjectures from Colin Barker, May 09 2020: (Start)
G.f.: x*(2 + 2*x + 3*x^2 + 2*x^3 + 11*x^4 - 2*x^5 + 22*x^6 - 2*x^7 + 8*x^8 + 18*x^9 - 42*x^10 + 10*x^11 + 60*x^12 - 10*x^13 + 66*x^14 - 14*x^15 - 130*x^16 - 33*x^18 + 16*x^19 + 65*x^20 - 8*x^23) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n>24.
(End)

Extensions

More terms from Jinyuan Wang, May 09 2020

A319780 a(n) is the period of cyclic structures that appear in the 3-state (0,1,2) 1D cellular automaton started from a single cell at state 1 with rule n.

Original entry on oeis.org

2, 2, 1, 0, 2, 1, 0, 2, 1, 2, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 0, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 0, 2, 1, 0, 2, 1
Offset: 1

Views

Author

Philipp O. Tsvetkov, Sep 27 2018

Keywords

Comments

The length of the sequence is equal to 3^3^3 = 7625597484987.

Examples

			1D cellular automaton with rule=1 gives the following generations:
   1  ..........1.......... <------ start
   2  111111111...111111111 <------ end
   3  ..........1..........
   4  111111111...111111111
   5  ..........1..........
   6  111111111...111111111
   7  ..........1..........
The period is 2, thus a(1) = 2.
For rule=150:
   1  ..........1..... <------ start
   2  .........22..... <------ end
   3  ........1.......
   4  .......22.......
   5  ......1.........
   6  .....22.........
   7  ....1...........
The period is 2, thus a(150) = 2.
For rule=100000000797:
   1  .........1....... <------ start
   2  ........2.2......
   3  ........111......
   4  .......2.112.....
   5  .......12........
   6  ......21.........
   7  ........2........ <------ end
   8  ........1........
   9  .......2.2.......
  10  .......111.......
  11  ......2.112......
  12  ......12.........
  13  .....21..........
  14  .......2.........
  15  .......1.........
The period is 7, thus a(100000000797) = 7.
a(10032729) = 12.
a(10096524) = 16.
		

Crossrefs

Cf. A180001.

Programs

  • Mathematica
    Table[
      Length[
      Last[
       FindTransientRepeat[(Internal`DeleteTrailingZeros[
            Reverse[Internal`DeleteTrailingZeros[#]]]) & /@
         CellularAutomaton[{i, 3}, {ConstantArray[0, 25], {1}, ConstantArray[0, 25]} // Flatten, 50], 2]]],
    {i, 1, 1000}
    ]

A334501 Eventual period of a single cell in rule 190 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 4, 5, 6, 7, 4, 9, 10, 11, 4, 13, 14, 15, 4, 17, 18, 19, 4, 21, 22, 23, 4, 25, 26, 27, 4, 29, 30, 31, 4, 33, 34, 35, 4, 37, 38, 39, 4, 41, 42, 43, 4, 45, 46, 47, 4, 49, 50, 51, 4, 53, 54, 55, 4, 57, 58, 59, 4, 61, 62, 63, 4, 65, 66, 67, 4, 69, 70
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

Conjectures from Colin Barker, May 09 2020: (Start)
G.f.: x*(1 + x + x^2 + 4*x^3 + 3*x^4 + 4*x^5 + 5*x^6 - 4*x^7 - x^9 - 2*x^10) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n>8.
(End)

Extensions

More terms from Bert Dobbelaere, May 09 2020

A334503 Eventual period of a single cell in rule 131 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 3, 8, 3, 3, 14, 16, 3, 20, 3, 3, 3, 3, 3, 32, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

Conjectures from Colin Barker, May 13 2020: (Start)
G.f.: x*(1 + 2*x^2 + 5*x^3 - 5*x^4 + 11*x^6 + 2*x^7 - 13*x^8 + 17*x^9 - 17*x^10 + 29*x^15 - 29*x^16) / (1 - x).
a(n) = a(n-1) for n>17.
(End)

Extensions

More terms from Jinyuan Wang, May 09 2020

A334509 Eventual period of a single cell in rule 41 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 2, 2, 15, 2, 28, 8, 36, 20, 44, 12, 52, 28, 60, 16, 68, 36, 76, 20, 84, 44, 92, 24, 100, 52, 108, 28, 116, 60, 124, 32, 132, 68, 140, 36, 148, 76, 156, 40, 164, 84, 172, 44, 180, 92, 188, 48, 196, 100, 204, 52, 212, 108, 220, 56, 228, 116, 236, 60, 244, 124
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020.

Crossrefs

Programs

  • Mathematica
    Table[-Subtract @@ Flatten[Map[Position[#, #[[-1]]] &, NestWhileList[CellularAutomaton[41], Prepend[Table[0, {n - 1}], 1], Unequal, All], {0}]],{n,62}] (* Stefano Spezia, Oct 04 2021, after Ben Branman in A180001 *)

Formula

Conjectures from Colin Barker, May 09 2020: (Start)
G.f.: x*(2 + 2*x + 2*x^2 + 2*x^3 + 11*x^4 - 2*x^5 + 24*x^6 + 4*x^7 + 8*x^8 + 18*x^9 - 10*x^10 - 2*x^11 - 5*x^12 - 10*x^13) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n > 14. (End)
Conjecture: a(n) = n*A176895(n) for n > 6. - Stefano Spezia, Oct 03 2021

Extensions

More terms from Jinyuan Wang, May 09 2020
Previous Showing 11-20 of 23 results. Next