cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A321360 Expansion of Product_{1 <= i <= j <= k} 1/(1 - x^(i*j*k)).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 14, 19, 32, 44, 67, 91, 139, 186, 269, 362, 517, 686, 958, 1264, 1741, 2286, 3092, 4033, 5416, 7018, 9296, 11998, 15769, 20228, 26356, 33648, 43539, 55343, 71079, 89942, 114909, 144775, 183819, 230746, 291557, 364544, 458371, 571084, 714971, 887798, 1106704
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Crossrefs

Formula

Euler transform of A034836.
G.f.: Product_{k>0} 1/(1 - x^k)^A034836(k).

A327066 Expansion of Product_{k>=1} (Product_{j=1..k} 1/(1 - x^(k*j))^j).

Original entry on oeis.org

1, 1, 2, 3, 7, 9, 17, 23, 41, 58, 93, 127, 205, 281, 423, 583, 869, 1180, 1716, 2322, 3317, 4479, 6282, 8406, 11696, 15589, 21343, 28325, 38480, 50756, 68307, 89688, 119725, 156586, 207449, 269921, 355530, 460804, 602816, 778281, 1012956, 1302481, 1686418
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[Product[1/(1-x^(k*j))^j, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327067 Expansion of Product_{k>=1} (Product_{j=1..k} 1/(1 - x^(k*j))^k).

Original entry on oeis.org

1, 1, 3, 6, 15, 26, 57, 101, 202, 358, 670, 1165, 2113, 3614, 6326, 10691, 18275, 30408, 50969, 83716, 137943, 223883, 363547, 583369, 935524, 1485673, 2355496, 3705275, 5815497, 9066696, 14100325, 21802824, 33622951, 51592978, 78949673, 120278899, 182742752
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[1/(1-x^(k*j))^k, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327068 Expansion of Product_{k>=1} (Product_{j=1..k} 1/(1 - x^(k*j))^(k*j)).

Original entry on oeis.org

1, 1, 3, 6, 17, 28, 66, 116, 248, 441, 867, 1516, 2894, 5015, 9138, 15724, 27954, 47428, 82421, 138380, 235910, 392040, 657590, 1081225, 1789550, 2914500, 4763562, 7689071, 12433581, 19897139, 31862226, 50583981, 80285138, 126509709, 199167763, 311620226
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[1/(1-x^(k*j))^(k*j), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A321285 Expansion of Product_{1 <= i < j} 1/(1 - x^(i*j)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 9, 16, 17, 31, 31, 52, 59, 89, 101, 154, 172, 254, 294, 412, 483, 675, 782, 1070, 1265, 1686, 1996, 2647, 3121, 4086, 4854, 6252, 7442, 9534, 11306, 14360, 17092, 21489, 25566, 31989, 37981, 47224, 56123, 69283, 82290, 101185, 119930, 146768
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^k)^Floor[DivisorSigma[0, k]/2], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 02 2018 *)

Formula

Euler transform of A056924.
G.f.: Product_{k>0} 1/(1 - x^k)^A056924(k).

A321566 Expansion of Product_{1 <= i_1 <= i_2 <= i_3 <= i_4} 1/(1 - x^(i_1*i_2*i_3*i_4)).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 14, 19, 32, 44, 67, 91, 139, 186, 269, 362, 518, 687, 960, 1267, 1747, 2294, 3106, 4052, 5449, 7063, 9365, 12092, 15914, 20422, 26639, 34029, 44090, 56075, 72108, 91303, 116802, 147264, 187210, 235182, 297562, 372346, 468777, 584553, 732803, 910744
Offset: 0

Views

Author

Seiichi Manyama, Nov 13 2018

Keywords

Crossrefs

Product_{1 <= i_1 <= i_2 <= ... <= i_b} 1/(1 - x^(i_1 * i_2 * ... * i_b)): A000041 (b=1), A182269 (b=2), A321360 (b=3), this sequence (b=4).

Formula

Euler transform of A218320.
G.f.: Product_{k>0} 1/(1 - x^k)^A218320(k).

A327739 Expansion of 1 / (1 - Sum_{i>=1} Sum_{j=1..i} x^(i*j)).

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 38, 78, 163, 338, 703, 1458, 3031, 6293, 13073, 27150, 56396, 117130, 243289, 505310, 1049552, 2179938, 4527804, 9404355, 19533126, 40570816, 84266725, 175024267, 363530253, 755062265, 1568285122, 3257371187, 6765649491, 14052439669
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Invert transform of A038548.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*
          ceil(numtheory[sigma][0](i)/2), i=1..n))
        end:
    seq(a(n), n=0..34);  # Alois P. Heinz, Sep 23 2019
  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k^2)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Floor[(DivisorSigma[0, k] + 1)/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

Formula

G.f.: 1 / (1 - Sum_{k>=1} x^(k^2) / (1 - x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A038548(k) * a(n-k).

A282249 Number of representations of n as a sum of products of pairs of positive integers: n = Sum_{k=1..m} i_k*j_k with m >= 0, i_k < j_k, j_k > j_{k+1} and all factors distinct.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 4, 4, 6, 5, 6, 8, 8, 9, 11, 10, 14, 15, 14, 14, 21, 18, 21, 25, 25, 30, 34, 33, 42, 45, 41, 55, 62, 58, 66, 79, 76, 94, 95, 97, 115, 131, 120, 148, 153, 159, 175, 203, 189, 226, 232, 243, 268, 299, 271, 340, 349, 363, 389
Offset: 0

Views

Author

Alois P. Heinz, Feb 09 2017

Keywords

Comments

Or number of partitions of n where part i has multiplicity < i and all multiplicities are distinct and different from all parts.

Examples

			a(0) = 1: the empty sum.
a(6) = 2: 1*6 = 2*3.
a(8) = 2: 1*8 = 2*4.
a(10) = 3: 1*10 = 2*5 = 1*4+2*3.
a(11) = 3: 1*11 = 1*5+2*3 = 2*4+1*3.
a(12) = 4: 1*12 = 2*6 = 1*6+2*3 = 3*4.
a(13) = 4: 1*13 = 1*7+2*3 = 2*5+1*3 = 1*5+2*4.
a(14) = 6: 1*14 = 1*8+2*3 = 2*7 = 1*6+2*4 = 2*5+1*4 = 3*4+1*2.
a(15) = 5: 1*15 = 1*9+2*3 = 1*7+2*4 = 2*6+1*3 = 3*5.
a(25) = 14: 1*25 = 1*19+2*3 = 1*17+2*4 = 1*15+2*5 = 1*13+2*6 = 1*13+3*4 = 2*11+1*3 = 1*11+2*7 = 2*10+1*5 = 1*10+3*5 = 2*9+1*7 = 1*9+2*8 = 3*7+1*4 = 1*7+3*6.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember;
          (((2*n+3)*n-2)*n-`if`(n::odd, 3, 0))/12
        end:
    g:= (n, i, s)-> `if`(n=0, 1, `if`(n>h(i), 0,
                    b(n, i, select(x-> x<=i, s)))):
    b:= proc(n, i, s) option remember; g(n, i-1, s)+
         `if`(i in s, 0, add(`if`(j in s, 0, g(n-i*j,
          min(n-i*j, i-1), s union {j})), j=1..min(i-1, n/i)))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..100);
  • Mathematica
    h[n_] := h[n] = (((2*n + 3)*n - 2)*n - If[OddQ[n], 3, 0])/12;
    g[n_, i_, s_] := If[n==0, 1, If[n>h[i], 0, b[n, i, Select[s, # <= i&]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] + If[MemberQ[s, i], 0, Sum[If[MemberQ[s, j], 0, g[n - i*j, Min[n - i*j, i - 1], s ~Union~ {j}]], {j, 1, Min[i - 1, n/i]}]];
    a[n_] := g[n, n, {}];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 01 2018, after Alois P. Heinz *)

A282379 Number of representations of n as a sum of products of pairs of positive integers: n = Sum_{k=1..m} i_k*j_k with m >= 0, i_k <= j_k, j_k > j_{k+1} and all factors distinct with the exception that i_k = j_k is allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 5, 9, 9, 8, 11, 15, 13, 17, 17, 19, 24, 29, 23, 33, 37, 39, 40, 53, 48, 62, 63, 71, 77, 94, 81, 110, 116, 122, 123, 156, 152, 185, 180, 200, 213, 259, 236, 287, 298, 325, 333, 404, 386, 450, 457, 506, 531, 615, 579, 679, 721
Offset: 0

Views

Author

Alois P. Heinz, Feb 13 2017

Keywords

Examples

			a(4) = 2: 1*4 = 2*2.
a(5) = 2: 1*5 = 2*2+1*1.
a(6) = 2: 1*6 = 2*3.
a(7) = 3: 1*7 = 2*3+1*1 = 1*3+2*2.
a(8) = 3: 1*8 = 2*4 = 1*4+2*2.
a(9) = 4: 1*9 = 1*5+2*2 = 2*4+1*1 = 3*3.
a(10) = 5: 1*10 = 1*6+2*2 = 2*5 = 1*4+2*3 = 3*3+1*1.
a(11) = 6: 1*11 = 1*7+2*2 = 2*5+1*1 = 1*5+2*3 = 2*4+1*3 = 3*3+1*2.
a(12) = 5: 1*12 = 1*8+2*2 = 2*6 = 1*6+2*3 = 3*4.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember;
          n*(n+1)*(2*n+1)/6
        end:
    g:= (n, i, s)-> `if`(n=0, 1, `if`(n>h(i), 0,
                    b(n, i, select(x-> x<=i, s)))):
    b:= proc(n, i, s) option remember; g(n, i-1, s)+
         `if`(i in s, 0, add(`if`(j in s, 0, g(n-i*j,
          min(n-i*j, i-1), s union {j})), j=1..min(i, n/i)))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..100);
  • Mathematica
    h[n_] := h[n] = n(n+1)(2n+1)/6;
    g[n_, i_, s_ ] := If[n == 0, 1, If[n > h[i], 0,
         b[n, i, Select[s, # <= i&]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] +
         If[MemberQ[s, i], 0, Sum[If[MemberQ[s, j], 0, g[n - i*j,
         Min[n - i*j, i - 1], s ~Union~ {j}]], {j, 1, Min[i, n/i]}]];
    a[n_] := g[n, n, {}];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 01 2021, after Alois P. Heinz *)
Previous Showing 11-19 of 19 results.