cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A183183 Numbers n such that (7*10^(2n+1)+18*10^n-7)/9 is prime.

Original entry on oeis.org

1, 2, 8, 19, 20, 212, 280, 887, 1021, 5515, 8116, 11852
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

Comments

a(13) > 10^5. - Robert Price, Jan 19 2016

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(7*10^(2n + 1) + 18*10^n - 7)/9], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime((7*10^(2*n+1)+18*10^n-7)/9) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077796(n)-1)/2.

A183185 Numbers n such that 10^(2n+1)-5*10^n-1 is prime.

Original entry on oeis.org

14, 22, 36, 104, 1136, 17864, 25448
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[10^(2n + 1) - 5*10^n - 1], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime(10^(2*n+1)-5*10^n-1) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077782(n)-1)/2.

A183186 Numbers k such that 10^(2k+1) - 4*10^k - 1 is prime.

Original entry on oeis.org

88, 112, 198, 622, 4228, 10052, 55862
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[10^(2n + 1) - 4*10^n - 1], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime(10^(2*n+1)-4*10^n-1) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077786(n) - 1)/2.

A077787 Numbers k such that (10^k - 1)/9 + 5*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

Original entry on oeis.org

21, 29, 81, 119, 321, 825, 1121, 2579, 3693
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
a(10) > 4*10^5. - _Robert Price, Jan 23 2025

Examples

			21 is a term because (10^21 - 1)/9 + 5*10^10 = 111111111161111111111.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(10^n + 45*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 4000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)

Formula

a(n) = 2*A107126(n) + 1.

Extensions

Name corrected by Jon E. Schoenfield, Oct 31 2018

A265383 Numbers k such that 10^k * (10^k - 1) - 1 is prime.

Original entry on oeis.org

1, 6, 9, 154, 253, 1114, 1390, 2618, 5611, 12871, 15286, 108609, 132574, 164369, 188484
Offset: 1

Views

Author

Serge Batalov, Dec 07 2015

Keywords

Comments

The primes arising from this construction (e.g., 999998999999) are among the primes counted in A266148. In particular, it follows that A266148(a(n)) > 0. - David A. Corneth, May 19 2016
a(16) > 188484. - Ben Meekins, Sep 08 2018

Examples

			6 is in the sequence because 10^12 - 10^6 - 1 = 999998999999 is prime.
		

Crossrefs

Cf. similar sequences listed in A265481.
A098845: Similar sequence in base 2.
A183187: Numbers k such that 10^(2k+1)-10^k-1 is prime, palindromic.
A266148: Number of n-digit primes in which n-1 of the digits are 9's.

Programs

  • Magma
    [n: n in [0..200] | IsPrime(10^n*(10^n-1)-1)]; // Vincenzo Librandi, Dec 08 2015
  • Mathematica
    Select[Range[15000], PrimeQ[10^# (10^# - 1) - 1] &] (* Vincenzo Librandi, Dec 08 2015 *)
  • PARI
    for(n=1,9999,if(ispseudoprime(10^n*(10^n-1)-1),print1(n", ")))
    

Extensions

a(11) from Kazuyoshi Asao, Feb 11 2002
a(12) from Serge Batalov, Dec 25 2015
a(13) from Ben Meekins, Feb 16 2016
a(14) from Ben Meekins, Dec 17 2016
a(15) from Ben Meekins, Sep 08 2018

A213881 k such that 10^(2*k+1)-j*10^k-1 is prime for some j = 1, 2, 4, 5, 7 or 8.

Original entry on oeis.org

1, 5, 8, 9, 13, 14, 22, 26, 36, 43, 88, 104, 112, 118, 169, 181, 198, 352, 378, 530, 622, 697, 1136, 1246, 1315, 1579, 1798, 1918, 2874, 2917, 4228, 5876, 6768, 10052, 17864, 18077, 22652, 23034, 25448, 47509, 52140, 55862, 62938, 67404, 134739, 145126
Offset: 1

Views

Author

Pierre CAMI, Jun 23 2012

Keywords

Comments

The j values are either 7 and 8 for k=1. For larger k, there is one j only: 8, 7, 7, 8, 5, 5, 1, 5, 8, 4, 5, 4, 2, 8, 8, 4, 7, 1, 7, 4, 7, 5, 1, 7, 8, 1, 7, 7, 1, 4, 7, 7, 4, 5, 8, 8, 1, 5, 1, 1, 4, 7, 1, 7, 2.
The next k is probably near 160000 to 200000

Examples

			10^3-7*10^1-1=929 prime as 10^3-8*10^1-1=919 so a(1)=1.
		

Crossrefs

Previous Showing 41-46 of 46 results.