A356785
E.g.f. satisfies log(A(x)) = x * (exp(x*A(x)) - 1) * A(x).
Original entry on oeis.org
1, 0, 2, 3, 64, 365, 7356, 85687, 1920752, 34821369, 905128300, 22172123171, 672107454888, 20552960420005, 721088019634724, 26257726364294895, 1053711696230404576, 44336326818388565105, 2010106841636689325532, 95747319823049127621019
Offset: 0
-
nmax = 19; A[_] = 1;
Do[A[x_] = Exp[x*(Exp[x*A[x]]-1)*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n\2, (n+1)^(k-1)*stirling(n-k, k, 2)/(n-k)!);
A355842
E.g.f. satisfies A(x) = 1/(1 - x)^(x * A(x)).
Original entry on oeis.org
1, 0, 2, 3, 44, 210, 3054, 27300, 449952, 6020784, 115381080, 2053568880, 45733246536, 1010390340960, 25916586868704, 680621684914080, 19881379012231680, 603034125051738240, 19833651290982164544, 680927283288289169280, 24953207662252739030400
Offset: 0
-
nmax = 20; CoefficientList[Series[LambertW[x * Log[1-x]] / (x * Log[1-x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 21 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(x*log(1-x)))))
-
a(n) = n!*sum(k=0, n\2, (k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!); \\ Seiichi Manyama, Aug 28 2022
A349559
E.g.f. satisfies A(x) = 1/(1 - x*A(x))^x.
Original entry on oeis.org
1, 0, 2, 3, 44, 270, 3714, 44940, 746528, 13149864, 271954440, 6154715160, 155055594792, 4254730262640, 127019898548256, 4088313657038520, 141301521555548160, 5216698433745207360, 204946906542573645504, 8536144551987171202560
Offset: 0
-
a:= n-> n!*coeff(series(RootOf(1/(1-x*A)^x-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 22 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x*A[x])^x + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 22 2021 *)
-
my(A=1,n=22); for(i=1, n, A=(1-x*A)^(-x+x*O(x^n))); Vec(serlaplace(A))
-
a(n) = n!*sum(k=0, n\2, (n-k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!); \\ Seiichi Manyama, Aug 27 2022
A356786
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(x * A(x)^2).
Original entry on oeis.org
1, 0, 2, 3, 92, 510, 15114, 174300, 5558944, 103712616, 3672530280, 96397602840, 3830335035240, 129817630491120, 5796134828193696, 239906921239210680, 11996259216566469120, 584024600798956215360, 32523678395272329425856
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (n+k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
A356787
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(x * A(x)^3).
Original entry on oeis.org
1, 0, 2, 3, 116, 630, 24054, 273000, 11105072, 207213552, 9175467960, 245785969440, 11954556125544, 421832039016960, 22609694372667024, 991695134898861120, 58565049582761702400, 3065736317041568378880, 199024242549235933723200
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (n+2*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
A356967
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(x^2/2 * A(x)).
Original entry on oeis.org
1, 0, 0, 3, 6, 20, 540, 4284, 35700, 698760, 10591560, 155024100, 3231336240, 68704908480, 1451024062488, 35843008924800, 950925111973200, 25881184257364800, 765471782499860160, 24210772652940214320, 797021694060934204800, 27752674398657594805440
Offset: 0
-
a(n) = n!*sum(k=0, n\3, (n-k+1)^(k-1)*abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!));
A356968
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(x^3/6 * A(x)).
Original entry on oeis.org
1, 0, 0, 0, 4, 10, 40, 210, 4144, 40320, 409800, 4527600, 72552480, 1170449280, 19489513680, 338983444800, 6672681818880, 141166715289600, 3149324442700800, 73497460049395200, 1825098639493104000, 47984287767342796800, 1326460667797094860800
Offset: 0
-
a(n) = n!*sum(k=0, n\4, (n-2*k+1)^(k-1)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
A356884
E.g.f. satisfies A(x)^A(x) = 1/(1 - x*A(x))^x.
Original entry on oeis.org
1, 0, 2, 3, 20, 150, 1254, 14280, 190000, 2863728, 49465080, 954312480, 20303200488, 473604468480, 12007399511184, 328671680500800, 9663415159357440, 303695188102656000, 10159173955921651776, 360424299614544829440, 13517056067747847719040
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (n-2*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
A356885
E.g.f. satisfies A(x)^(A(x)^2) = 1/(1 - x*A(x))^x.
Original entry on oeis.org
1, 0, 2, 3, -4, 30, 954, 6300, 6432, 424872, 18273960, 260682840, 1754408424, 47063118960, 2314149100704, 54798086299320, 773632032345600, 20746972036284480, 1072205580591921600, 36098491880448944640, 816375193722964932480, 25160238159364392336000
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (n-3*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
A371147
E.g.f. satisfies A(x) = 1/(1 - x*A(x))^(x^2*A(x)^2).
Original entry on oeis.org
1, 0, 0, 6, 12, 40, 2700, 21168, 173040, 7611840, 125415360, 1848591360, 71211998880, 1844075600640, 41500836336960, 1609925690419200, 55708371912211200, 1719475797882286080, 72091120665964654080, 3046645011228998860800, 119757727692451283097600
Offset: 0
-
a(n) = n!*sum(k=0, n\3, (n+1)^(k-1)*abs(stirling(n-2*k, k, 1))/(n-2*k)!);
Showing 1-10 of 14 results.